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Abstract

The RHET system is a knowledge representation tool that is intended to support the development
of advanced prototype natural language understanding and planning systems. It is what is currently
called a "hybrid" representation, which consists of a set of separately defined specialized reasoning
systems that are presented to the user within a single uniform framework. It can be used as a horn-
clause based theorem proving system, or it can be used as a rich frame-based representation, or
used in any way falling between these styles of use. The primary specialized reasoning
components include a type hierarchy system, an equality reasoning system, a temporal reasoning
system, and a hierarchical context mechanism that support reasoning about different agent's beliefs
as well as hypothetical reasoning. This report provides a sequence of tutorials each demonstrating a
major feature of the system.
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The RHET System: A Sequence of Guided
Tutorials

The RHET system is a knowledge representation tool that is intended to support the development
of advanced prototype natural language understanding and planning systems. It is what is currently
called a "hybrid" representation, which consists of a set of separately defined specialized reasoning
systems that are presented to the user within a single uniform framework. It can be used as a horn-
clause based theorem proving system, or it can be used as a rich frame-based representation, or
used in any way falling between these styles of use. The primary specialized reasoning
components include a type hierarchy system, an equality reasoning system, a temporal reasoning
system, and a hierarchical context mechanism that support reasoning about different agent's beliefs
as well as hypothetical reasoning.

RHET is built in Common Lisp [Steele, 1990] and has many features and options. This
report provides a sequence of tutorials each demonstrating a major feature of the system. The first
section introduces RHET. 1, a subset of RHET that can be viewed as a variant of PROLOG, and is
the basis for all subsequent sections. Once you are familiar with the RHET.1 and RHET.2 subsets,
most of the other tutorials can be examined independently of the others. This way, you can become
familiar with the features of RHET that you are interested in without having to read through many
other features that are not of interest. Each tutorial presents the new concepts, defines the syntax
for the new parts of the RHET, describes the basic functions in the user interface, presents
examples that illustrate the new techniques and capabilities, and finally describes any other
functions and built-in predicates that are useful in certain applications.

Appendix A describes how to install and run RHET in the Symbolics environment and in
Allegro Common Lisp. Further details on RET can be found in the reference manual [Miller
1990a] and the programmer's guide [Miller 1990b]. This report documents version 19, while the
reference manual and programmers guide document slightly older versions. In cases of conflict,
this report should be believed. Appendix B indicates some of the changes with version 19.

1. RHET.1: RHET as PROLOG

1.1 Introduction
The core of RHET is a representation of Horn clauses that provides a uniform interface to

all of the RHET subsystems. In this section we introduce the part of the RHET language and the
user interface that corresponds to a fairly traditional PROLOG system. While it is possible to
simply use RHET as a version of PROLOG, there is significant computational overhead from the
rest of the system. So if you don't need some of the features provided by RHET, you should use a
commercial PROLOG. This comparison with PROLOG, however, allows us to introduce RHET
quickly and provides a basis for all the following tutorials. If you are not familiar with PROLOG,
we recommend one of the standard texts on the language, such as Clocksin and Mellish [19811 or
Sterling and Shapiro [1986].

Knowledge in RHET is expressed as Horn Clauses, which are expressions of the form
[formo index form1 ... formN]. Formo will be referred to as the head of the clause. Forms are in
prefix form and consist of a predicate name followed by a list of arguments, i.e., [pred-name argo
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... argn] and correspond to literals in the theorem proving literature. A RHET index is any atom
beginning with the character "<". Indices are used only to help organize the database for retrieval
and update and have no effect on any RHET inference process.

Variables in RHET are of the form ?name*typename, as in ?x*T-U. For now, we only
need to distinguish between variables ranging over RHET terms (of type *T-U) and variables
ranging over lisp objects (of type *T-LISP). Only the first occurrence of a variable in a horn clause
needs to indicate its type. The following are RHEr axioms:

[[Parent ?x*T-U ?y*T-UI <INDEX1 [Father ?x ?y]]
; ?x is a parent of ?y if ?x is the father of ?y, with index "<INDEX)"

[[Parent ?x*T-U ?y*T-UL <INDEX2 [Mother ?x ?y]]
; ?x is a parent of ?y if ?x is the mother of ?y; with index "<JNDEX2"

RHET treats axioms that have no RHS or any variables in a special way. These are called
facts , and are indicated using a simplified syntax. If a fact has an index, it is indicated as an extra
argument to the predicate. In a proof, facts are always checked first before any axioms are tried.
Here are a couple of facts:

[Father John 1 Mary1] ; The fact that John1 is the father of Mary]
[Mother Suel Maryl <1]. ; The fact that Sue) is the mother of Mary] with

index <1
RHET automatically converts axioms with no RHS or variables into facts. Thus if you

assert the axiom [[Mother [Suel] [Johnl]] <1] it will be converted into the fact Mother Suel
Johnl <1].

RHET supports lists using standard Lisp syntax. Thus a typical "member" function for lists
could be defined in RHET as follows:

[[MyMember ?x*T-LISP (?x*T-LISP. ?y*T-LISP)] <3 1
[[MyMember ?x'T-LISP (?xl*T-LISP. ?y*T-LISP)] <3 [MyMember ?x ?y]]

Lisp and RHET constants are distinguished in RHET.For example, :JOHN is a LISP atom
and [JOHN] is a RHET constant. RHET can identify RHET objects by context. Thus JOHN is a
RHET object when in a context signalled by RHET parentheses. Thus, [P A B] is a RHET literal
consisting of a predicate name P and two RHET constants [A] and [B]. RHET also allows mixed
terms. For example, ([P] :A [B]) is a list consisting of the RHET constant [P], the LISP atom :A
and the RHET constant [B]. [P :A B] is a RHET literal with predicate P, and two arguments: a
Lisp atom :A, and a RHET constant [B].

RHET also supports numbers in a way similar to PROLOG. RHET supports the general
type *T-Number, which sub-divides into three different number types *T-Integer, *T-Float and
*T-Rational, corresponding to the corresponding types in Common Lisp. Any Common Lisp
numeric expression involving integers, floats and rationals can be evaluated in RHET, and bound
RLET variables can be used freely in expressions. Unbound variables are not permitted in numeric
expressions. Thus

(+12)

is an acceptable numeric expression, as is

(+ ?x'T-Integer 3)

if ?x'T-Integer is bound.
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1.2 Special Operators in RHET
Like PROLOG, RHET offers a range of special operators that are useful for making certain

operations more convenient and for introducing control commands. This section reviews the
common operators that can be found in most PROLOGs. Unless explicitly mentioned, these
operators are not assertable, i.e., they cannot be added to the database. For example, it would
make no sense to add axioms and facts defining [Cut] to the database. But, of course, [Cut] can
appear in axioms that are added to the database.

[And Forml ... FormN]
This is true iff all the forms can be proven. And evaluates its arguments in the order
supplied and short-circuits evaluation if possible. Thus any form following a form that fails
will not be evaluated. The null form [And] automatically succeeds. If [Cut] is
encountered as a form, backtracking past it cuts out of the entire And, but not necessarily
the entire rule.

[Bound Term]
Succeeds only if the specified term is a bound variable. It fails on any other term such as an
unbound variable or a constant. Thus if ?x is bound to [Fool, then [Bound ?x] will
succeed, whereas [Bound ?y] and [Bound [Foo]] will fail. Note that [Bound <term>]
differs from [Unless [Var <term>]] on how they treat constants.

[Cond (TestForm ActForml ... ActFormn)*)
This expression is like the Lisp COND statement, the first testForm to succeed results in its
ActForms being proven. For example, [COND ([pli [all [a2]) ([p2] [a3])] is equivalent to
[OR [AND [pl] [CUT] [all [a2]] [CUT] [AND [p2] [CUT] [a3]]].

[Cut]
The Cut literal has no effect until RHET tries to backtrack past it, and then the prover
immediately fails on the subproblem it was working on.

[Fail]
This predicate is always false.

[Ground Term]
This succeeds only if the term does not contain any unbound variables.

[Member Term List]
This predicate is true if the specified term is a member of the specified list.

[Or Form1 ... FormN]
This expression is true if any of the specified forms can be proven. The 0-arity form,
[OR], automatically fails. The evaluation of forms will be short-circuited if possible, i.e. it
will stop at the first form that evaluates to true. Note that the Cut operator is not caught by
this form: backtracking through a Cut will cause the rule containing the Or to fail.
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[Rprint Term] ... TermN]
The specified terms are pretty-printed on successive lines to the default output stream. The
stream is set by setting the Common Lisp default output stream.

[Rterpri]
This print a line feed and carriage return to the default output stream

[Unless Forms ... FormN]
This expression is true only if the specified forms cannot be proven. This is the standard
proof-by-failure mechanism in PROLOG. Warning, RHET also has a predicate Not, but
this is not negation as failure. It has a special interpretation as described in section 2.

[Var Term]
This succeeds only if the term is an unbound variable.

[Win]
This predicate always succeeds and is useful inside Cond forms.

RHET supports the following predicates for numeric manipulation:

[:= Variable Expression]
Evaluates the expression and binds the variable to the resulting value. Thus
[:= ?x*T-Integer (* 3 (+ 4 2))]
will succeed and binds ?x*T-Integer to the value 18.

[== Expression] Expression2]
This is true if the evaluation of the two expressions yields the same value using the Lisp
function EQL.

[=1= Expressionl Expression2]
This is true if the evaluation of the two expressions yields different values.

RHET also supports numeric comparison operators with the obvious interpretations.

< Expression1 Expression2] - Expressionl is less than Expression2

[> Expressionl Expression2] - Expressionl is greater than Expression2

[<= Expression] Expression2] - Expression 1 is less than or equal to Expression2

[>= Expression) Expression2] - Expression 1 is greater than or equal to Expression2.

1.3 Using The RHET.1 Subset
Typically, the functions that are used to call RHET have arguments that are RHET forms.

One argument that is very common is a called a headPatern. A headPattem is simply a form used
to select all axioms whose head unifies with it. Thus the headpattem [P ?x Jack] would select every
axiom with a head that unifies with [P ?x Jack]. You may select every axiom involving a predicate
name P (even those with a varying number of arguments) with [P &rest ?x*T-LISP] (or
[P &rest ?x] since the type of ?x will default to the right type). When a function may take several
different arguments, the set of options will be listed within curly brackets. The primary function
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for adding facts and axioms to RHET is the following:

(Rassert Axiom1 ... Axiomn)
This function can be used to assert arbitrary RHET axioms and facts. For example, we can
define a small database for parenthood predicates as follows:
RHET -> (Rassert

[[Parent ?x*T-U ?y*T-U] <INDEX1 [Father ?x ?y]]
[[Parent ?x*T-U ?y*T-UI <INDEX2 [Mother ?x ?y]]
[[Mother [Sue] [John]] <DATA]
[[Father [Sam] [John]] <DATA]
[[Mother [Sue] [Jack]] <DATA])

to which RHET will respond:

([MOTHER SUE JACK <DATA] [FATHER SAM JOHN <DATA]
[MOTHER SUE JOHN <DATA]
[[SBMB [PARENT ?x*T-U ?y*T-U]] <INDEX2 [MOTHER ?x*T-U ?y*T-U ]]
[[SBMB [PARENT ?x*T-U ?y*T-U]] <INDEX 1 [FATHER ?x*T-U ?y*T-U ]])

The response lists all the facts and axioms added in reverse order. The "SBMB" operator around
the axioms indicates that these axioms form part of what the system (RHET) believes is mutually
believed. This can be ignored for now as it relates to RHET's context mechanism to be discussed
later in the tutorial. For now, all axioms will be added and proofs will be done with respect to this
modality.

Once axioms and facts are defined, then proofs can be done. The primary function for
invoking proofs is:

(Prove Form)
This invokes the theorem prover which then attempts to prove the specified form using a
standard backwards chaining strategy and returns an answer with the variables bound
appropriately. Thus if we call
RHET -> (prove [Parent ?x*T-U [John]])

[PARENT ?x->SAM [JOHN]]
Multiple queries may be made simultaneously by using the And operator. Thus to find if
Jack and John share a parent, we might query
RHET -> (prove [And [Parent ?x*T-U [John]] [Parent ?x*T-U [Jack]]])

[AND [PARENT ?x->SUE JOHN] [PARENT ?x->SUE JACK]].

If you want all the answers, or a fixed number of them then you may use the function:

(Prove-All Form &key Number-of-Proofs)
This will return all answers, or the number requested in the optional argument. Here is an
example with the above database:
RHET -> (prove-all [Parent ?x*T-U [John]])

([PARENT SUE [JOHN]] [PARENT SAM [JOHN]])
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(Prove-All [Parent ?x*T-U [John]] :number-of-proofs 1) will return only the first answer.
Note that prove-all will find all possible answers, but not necessarily perform all possible
proofs, since many proofs might return the same answer. In particular, if the query has no
variables in it, then prove-all is equivalent to prove.

Finally, there are functions for deleting axioms and facts from the database and for resetting the
database to its starting point.

(Remove-All HeadPanern)
Removes all axioms and facts that match the specified head pattern. Thus (Remove-All [P
&rest ?x]) retracts all facts and axioms for the predicate P, while (Remove-All [P ?x A])
retracts all facts that unify with [P ?x A] and axioms whose head unifies with [P ?x A].

(Reset-Rhet)
Clears the database back to its original state when RHET was first loaded.

The following functions are also useful in some situations.

(Remove-Facts HeadPatern)
Removes all facts that match the specified head pattern. Thus (Remove-Facts [P &rest ?x])
retracts all facts for the predicate P, while (Remove-Facts [P ?x A]) retracts all facts that
unify with [P ?x A].

(Remove-B-Axioms HeadPattern)
Retracts all axioms with a head that matches the specified pattern, which may be a predicate
name, or a form that must unify with the head. Thus, (Remove-B-Axioms [P &rest ?x])
retacts all axioms with a head with the predicate P, and (Remove-B-Axioms [P ?x A])
reu'acts all axioms with a head that unifies with [P ?x A].

(Clear-Axioms)

Removes all user-defined axioms but leaves the facts untouched.

Inspecting and Debugging

The functions in this section allow the user to inspect the database and to debug proofs.
Note that often the simplest way to inspect a database in RHET is to use a text editor on the file
containing your axioms, just as you would inspect the definitions of Common Lisp functions in the
editor rather than pretty-printing the definition in Lisp. Nevertheless, on many occasions the
following functions are useful:

(List-All HeadPattern)
This returns a list of all facts that unify with the head pattern specified, and all axioms
whose head unifies with the head pattern. The facts are listed first followed by the axioms,
reflecting the order in which RHET uses this information in a proof. Thus, starting from
the database resulting from the Rassert example above
RHET -> (Rassert [Parent George Sue])

RHET -> (List-AD [Parent George ?x])

returns the list
([PARENT GEORGE SUE]
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[[SBMB [PARENT ?x*T-U ?y*T-U]] <INDEX 1 [FATHER ?x*T-U ?y*T-U]]
[[SBMB [PARENT ?x*T-U ?y*T-U]] <INDEX2 [MOTHER ?x*T-U ?y*T-U 1]).

(List-Facts HeadPattern)
This returns all facts that unify with the head pattern specified. Thus, with the database
resulting from the Rassert example above,
RHET -> (List-facts [Mother [sue] ?x])
returns the list
([MOTHER SUE JACK <DATA] [MOTHER SUE JOHN <DATA]).

(List-B-Axioms HeadPattern)
This returns a list of all axioms whose head unifies with the specified pattern. Thus, with
the database resulting from the Rassert example above,
RHET -> (List-B-Axioms [Parent &rest ?x])
returns the list

([[SBMB [PARENT ?x*T-U ?y*T-U ]] <INDEX1 [FATHER ?x*T-U ?y*T-U]]
[[SBMB [PARENT ?x*T-U ?y*T-U 1] <INDEX2 [MOTHER ?x*T-U ?y*T-U ]])

(List-Fact-References Form*)
This returns all facts that have all the specified forms as arguments. This can be used to
find all the facts that mention a certain object. For instance (List-Fact-References [Sue])
will return all facts that have [Sue] as an argument.

(List-Facts-with-Bindings HeadPattern)
Same as List-Facts except that it returns the variable bindings as well in the format
((<fact> <binding list>)*). This is useful in some situations where you are interested in a
particular variable's values rather than the actual facts. Thus, with the database resulting
from the Rassert example above,
RHET -> (List-facts-with-bindings [Mother [sue] ?x])

returns the list
(([Mother Sue Jack <DATA] (?x [Jack])) ([Parent Sue John <DATA] (?x [John])).

The RHET trace facility gives the user the ability to trace predicates, set breakpoints and to
single-step through proofs. This can all be invoked through RHETs menu-driven interface, and is
also available in the following LISP functions:

(Trace-B-Axiom &rest ( (bc-axiom headpattern) ((bc-axiom headpattern) keyword*) I*
This function starts a trace on -he specified predicate that will print out a trace message eac.,
time the predicate is called and returns. There are additional optional specifications to the
trace command that allow you to selectively trace calls and returns, to set break points and
invoke the axiom stepper. For example,

(Trace-B-Axiom [Parent &rest ?x])
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will print a message each time a the system ties to prove a literal with predicate Parent -
both when the proof is initiated (the call) and when the proof completes successfully or
unsuccessfully (the return). If no argument is given, then it returns a list of all predicates
that are currently traced. One can also custom tailor the tracing information given along the
lines of the regular trace function in common lisp. For example, the call

(Trace-B-Axiom '([Parent ?x ?y] :Call :Break :Return :Trace))
will interrupt the proof and enter the debugger whenever the system tries to prove a literal
that unifies with [Parent ?x ?y] and will print a trace message whenever the proof returns.
The full set of options is as follows: actions may be specified at four points: when the
predicate is called (:Call), when the prover calls terms on the RI-IS (:Next), when a proof
succeeds or fails (:Return), or when terms on the RHS fail (:Retry). There are also four
actions that may be specified: print a diagnostc message (:Trace), invoke a break loop
(:Break), invoke the debugger (:Debug), or invoke the stepper (:Step).
Multiple functions may be traced in one call (and options may be specified for each if
enclosed in parentheses). Thus to do the above trace and to also trace the predicate Mother,
we could call

(Trace-B-Axiom '([Parent ?x ?y] :Call :Break :Return :Trace)
[Mother &rest ?x]).

For example, consider tracing a proof given the axioms asserted above, where the trace
output is in the smaller font size.
RHET -> (Trace-B-Axiom [parent ?x ?y])

([[SBMB [PARENT ?X*T-U ?Y*T-U ]] <INDEX2 [MOTHER ?X*T-U ?Y*T-U ]
[[SBMB [PARENT ?X*T-U ?Y*T-U ] <INDEX1 [FATHER ?X*T-U ?Y*T-U ]])

RHET -> (prove-all [parent ?x ?y])
Matched and Interpreting Axiom [[SBMB [PARENT ?X*T-U ?Y*T-U ]] <INDEXI [FATHER ?X*T-U

?Y*T-U ]]

Axiom Succeeds ([[SBMB [PARENT ?X->SAM ?Y->JOHN-] <INDEXI
[FATHER ?X->SAM ?Y->JOHN]])

Axiom Fails ([[SBMB [PARENT ?X*T-U ?Y*T-U]] <INDEXI [FATHER ?X*T-U ?Y*T-U ]])

Matched and Interpreting Axiom [[SBMB [PARENT ?X*T-U ?Y*T-U ]] <INDEX2
[MOTHER ?X*T-U ?Y*T-U ])

Axiom Succeeds ([[SBMB [PARENT ?X->SUE ?Y->JOHN]] <INDEX2
[MOTHER ?X->SUE ?Y->JOHN]])

Axiom Succeeds ([[SBMB [PARENT ?X->SUE ?Y->JACK]] <INDEX2
[MOTHER ?X->SUE ?Y->JACK]])

Axiom Fails ([[SBMB [PARENT ?X*T-U ?Y*T-U ]] <INDEX2 [MOTHER ?X*T-U ?Y*T-U 11)
([PARENT SUE JACK] [PARENT SUE JOHN] [PARENT SAM JOHN])

(UnTrace-B-Axiom &Optional [BC-Axiom PredName})
This function simply turns off tracing for the predicate specified. The form of the argument
is specified in Trace-B-Axiom. If no argument is specified, all predicates will be untraced.
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(Trace-Builtins)
Builtin predicates cannot be traced individually, but can't be traced as a group. This
function causes a detailed tracing of all builtins and user defined predicates.

(Untrace-Builtins)
This turns off full tracing.

(Rhet-Dribble-Start File-Spec &Optional (Mode :Both))
Starts a dribble file. The File-Spec is a string that specifies a file in the format used by the
host Operating System.

(Rhet-Dribble-End)
Ends dribbling and properly closes the file.

Using Indices

The index mechanism in RHET provides an alternate way to organize axioms for
inspection, retrieval and deletion. All these functions take an argument that is an index pattern. The
simplest index pattern is an atom. When an atom is used, all axioms and/or facts with exactly that
atom as an index are affected. RHET also supports a regular expression language for building
complex patterns to match against indices. The exact format is specified in the reference manual.

(List-All-By-Index indexExpression)
This returns all facts and axioms that match the index pattern specified. If the index is an
atom, this is simply the facts and axioms with tf, at atom as an index.

(List-Facts-By-Index indexExpression)
This returns all facts that match the index pattern specified. If the index is an atom, this is
simply the facts with that atom as an index. An example with the above database is
RHET -> (List-Facts-by-index '<DATA)
([MOTHER SUE JOHN <DATA] [FATHER SAM JOHN <DATA]

[MOTHER SUE JACK <DATA])

(List-B-Axioms-By-Index indexExpression)
This returns a list of all axioms that match the index pattern specified. For example
RHET -> (list-b-axioms-by-index '<INDEX 1)
([[SBMB [PARENT ?x*T-U ?y*T-U ]] <indexl [FATHER ?x*T-U ?y*T-U ]])

(Remove-All-by-Index indexExpression)

Retracts all facts and axioms with indices that match the index pattern specified

(Remove-Facts-by-Index indexExpression)
Retracts all facts with indices that match the index pattern specified. An example is
RHET -> (Remove-facts-by-index '<DATA)

(Remove-B -Axioms-By-Index indexExpression)
Removes all axioms with indices that match the index pattern specified. An example is
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RHET -> (remove-b-axioms-by-index '<INDEX 1).

1.4 Examples
This is an example adapted from Clocksin and Mellish [1981] concerning a database of library
facilities.
RHET-> (Rassert

;;; Facilities that people with overdue books can have.
;;; we use [cut] here since, we are interested in whether he has overdue books or not
;;; and not how many overdue books he has.

[[Facility ?person*T-U ?fac*T-U] <FAC
[BookOverDue ?person ?book*T-U] [cut] [BasicFacility .fac]]

;;; this is the facilities general people can have.
[[Facility ?person*T-U ?fac*T-UL] <FAC [GeneralFacility ?fac]]
;;; these are the basic facilities for everyone.
[[BasicFacility [Reference]] <BASIC]
[[BasicFacility [Enquiries]] <BASIC ]
;;; these facilities are kept away from people with overdue books
[[AdditionalFacility [Borrowing]] <ADD ]
[[AdditionalFacility [InterLibraryLoan]] <ADD]
;;; these are all facilities a person without overdue books can enjoy.
[[GeneralFacility ?fac*T-U] <GEN [BasicFacility ?fac]]
[[GeneralFacility ?fac*T-U] <GEN [AdditionalFacility ?fac]]
;;; facts that indicate which person has which overdue books
[[BookOverDue [John] [Rhet.manual]] <OVERDUE]
[[BookOverDue [John] [Common.lisp]] <OVERDUE]
;;; legal users of the library
[[Client [John]] <CLIENT]
[[Client [Mary]] <CLIENT])

([CLIENT MARY <CLIENT] [CLIENT JOHN <CLIENT]
[BOOKOVERDUE JOHN COMMON.LISP <OVERDUE]
[BOOKOVERDUE JOHN RHET.MANUAL <OVERDUE]
[[SBMB [GENERALFACILITY ?fac*T-U ]] <GEN

[ADDITIONALFACILITY ?fac*T-U ]] [
[SBMB [GENERALFACILITY 9fac*T-U]] <GEN

[BASICFACILITY ?fac*T-U ]]
[ADDITIONALFACILITY INTERLIBRARYLOAN <ADD]
[ADDITIONALFACILITY BORROWING <ADD]
[BASICFACILITY ENQUIRIES <BASIC] [
BASICFACILITY REFERENCE <BASIC]
[[SBMB [FACILITY ?person*T-U ?fac*T-U ]] <FAC

[GENERALFACILITY ?fac*T-U ]]
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[[SBMB [FACILITY ?person*T-U ?fac*T-U ]] <FAC
[BOOKOVERDUE ?person*T-U ?book*T-U ]
[CUT]
[BASICFACILITY ?fac*T-U fl)

Testing the data

see what facilities are open to John, who has overdue books
RHET -> (prove-all [Facility [John] ?fac*T-U])

([FACILITY [JOHN] ENQUIRIES] [FACILITY [JOHN] REFERENCE])
see what facilities are open to Mary.

RHET -> (prove-all [Facility [Mary] ?fac*T-UL])

([FACILHY [MARY] INTERLIBRARYLOAN] [FACILITY [MARY] BORROWING]
[FACILITY [MARY] ENQUIRIES] [FACILITY [MARY] REFERENCE])

the overdue books information is grouped under the same index <OVERDUE
RHET -> (List-Facts-by-index '<overdue)

([BOOKOVERDUE JOHN RHET.MANUAL <OVERDUE]
[BOOKOVERDUE JOHN COMMON.LISP <OVERDUE])

assume that Mary just has a overdue book, we can just insert this into the database.
RHET -> (Rassert [[BookOverDue [mary] [Whatever.book]] <OVERDUE])

([BOOKOVERDUE MARY WHATEVER.BOOK <OVERDUE])
then the facilities open to her is restricted.

RHET -> (prove-all [Facility [Mary] ?Fac*T-U])

([FACILITY [MARY] ENQUIRIES] [FACILITY [MARY] REFERENCE])
we can still extract all the overdue books using the index.

RHET -> (List-Facts-by-index '<overdue)

([BOOKOVERDUE JOHN RHET.MANUAL <OVERDUE]
[BOOKOVERDUE JOHN COMMONLISP <OVERDUE]
[BOOKOVERDUE MARY WHATEVER.BOOK <OVERDUE])

1.5 Other Useful Functions and Predicates
This section describes some additional functions and builtin predicates that are useful in many
applications. In addition, section 5 (the RHET.5 subset) contains additional functions relating to
the integration of RHET and Common Lisp. You can skip directly to section 5 if you need these
facilities.

The following builtin predicates are mostly procedural in nature and often have side effects.
Unless explicitly noted otherwise, these builtins are not assertable.

[Assert-Axioms Axiom1 ... AxiomNI
This asserts the specified axioms or facts into the database just as the Lisp function
Rassert. All variables in the axioms that also appear outside the axiom assertion will be
replaced by their binding before the axiom is added. Thus in an environment where ?x is
bound to [Fool, the term

[Assert-Axioms [[P ?x ?y] <1 [Q ?x ?y]]]

-11-



will add the axiom
[[P [Foo] ?y] <1 [Q [Foo] ?y]].

[Assert-Fact Factl ... FactN]
This adds the specified facts into the database. All variables appearing in the facts to be
added must be bound. An unbound variable will generate an runtime error.

[Bagof Varl Form Var2]
This is a faster version of SetAll that doesn't check for duplications in the list bound to
Varl. It is true if Varl is set to a list of all assignments to Var2 that satisfy the specified
form. See Setall for examples.

[Forall! vars defForm testForml ... testFormn]
This expression is true if for every binding of a variable in vars, if defForm succeeds,
then all testFormi's succeed. Note that vars may be a single variable or a list of
variables, and all variables should appear in detForm if this is to do what you expect!
Thus [FORALL! ?x [P ?x] [Q ?x]] is true only if every binding of ?x satisfying [P ?x] also
satisfies [Q ?x]. This predicate can be used in assertions. If [Forall! ?x [P ?x] [Q ?x]] is
asserted, then RHET asserts [Q ?x] for every ?x such that it can prove [P ?x]. It can also

[Retract Form]
This retracts all facts (not axioms) that unify with the specified form.

[RFormat Stream control-String &rest Form*]
This is modelled after the Common Lisp Format function. The forms specified are printed
according to the control-String on the specified Stream. See a Common Lisp manual
for details. Normally the stream will be :T for the default, but it can also be a Lisp
expression that will evaluate to a stream.

[SetAll Servar Form Var]
This expression is true if the specified setvar is the list of all bindings of the specified var
that can make the specified form equivalent to an asserted fact. This function does not
invoke backward chaining, it only queries the existing database. 1 Thus if the database
contains [P A B], [P C D], and [P E D], then [SetAll ?x*T-List [P ?y ?z] ?z] will be
provable with ?x bound to ([B] [D]).

2. RHET.2: RHET as a Deductive Data Base

The RHET.2 subset extends the PROLOG base of RHET. 1 with several capabilities that
make it useful for many knowledge representation applications. These extensions are forward
chaining axioms, a capability to postpone evaluation of expressions until all variables in it are
bound, and a limited capability for handling negation.

To distinguish them from forward chaining axioms, we will call the PROLOG-style axioms
introduced in section 1 backward chaining axioms. Forward and backward chaining axioms have

1 If you want to invoke backward chaining, this can be done using Forall!, or using Genvalue documented in
section 5.
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essentially the same syntax, the only difference is how they are used by the system. Backward
changing axioms are applied when the system is attempting prove some set of formulae. Forward
chaining axioms are used to perform inference when new facts are added to the data base. These
correspond exactly to the consequent and antecedent theorems introduced in PLANNER. A
forward chaining axiom has one or more triggers, which are literals that indicate when the axiom is
to be used, namely whenever a fact is added that matches one of the triggers. The general form of a
forward chaining axiom is

[Head Index Literall ... Literal .forward Triggerl ... Triggerm].

When a forward chaining axiom's trigger is matched, the variable bindings are used to
instantiate the variables in the axiom. Then if all the literals on the right-hand side of the axiom can
be successfully unified with facts in the data base, the head is added to the database. Note that there
is no attempt to prove the literals on the right-hand side, they are simply matched into the database.
Adding the head may then recursively invoke additional forward chaining axioms.

Consider an example: Let us define a predicate Above to be the transitive closure of a
predicate On. The following two forward chaining axioms could be used:

Head Right Hand Side Trigger
[[Above ?x ?y] <1 [On ?x ?y] :forward [On ?x ?y]]
[[Above ?x ?y]<2 [On ?x ?z] [Above ?z ?y] :forward [Above ?z ?y]]
If we add [On A B], then the trigger of axiom 1 matches. Thus axiom 1 is attempted. The

right hand side is simply the trigger itself, so the axiom applies and [Above A B] is added to the
database. This time, the trigger for axiom 2 matches. In attempting axiom 2, however, no literal of
the form [On ?x A] is found in the database, so the axiom does not apply. If [On B C] is now
added, then the trigger for axiom I matches, and the axiom applies resulting in [Above B C] being
added to the data base. Now the trigger on axiom 2 matches. In this case, the right hand side can
be found in the database since [Above B C] and [On A B] are in the database, so [Above A C] is
added to the database.

Forward chaining occurs only when a fact matching a trigger is added. In particular, no
forward chaining is attempted when a forward chaining axiom is added, even if all the literals on
the right hand side already exist in the database.

RHET uses truth maintenance techniques to keep track of facts that are added by forward
chaining. This information is used in retraction. If a fact is retracted, then all conclusions that were
derived by forward chaining from this fact are retracted as well unless they have independent
support (i.e., it could be inferred by another forward chaining axiom that is still valid, or it was
directly asserted by the user). This technique is limited however, and cannot handle changes that
are made using builtin functions that add or delete facts from the database. For instance, if adding
fact P caused some other fact Q to be retracted from the database, then retracting P would not
restore Q.

One of the problems with forward chaining systems is that if an inconsistent fact is added,
the system may add a considerable number of new facts before the contradiction is detected. Since
RHET maintains the justification for each newly added fact, once it finds a contradiction, it can
retract all the consequences and the addition fails. RHET also supplies a capability for the user to
check for and signal contradictions that the system couldn't detect.
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Constraint Posting

Constraint Posting is the second new feature. This allows the user to delay the proof of
certain literals until all the variables in it are bound. This is called posting a literal. If a literal is
posted that contains no unbound variables, then the literal becomes a goal as in a normal proof. If it
contains any unbound variables, however, then its evaluation is delayed until the variables are
bound. The mechanism for doing this involves using a new kind of term called a constrained
variable. A constrained variable is of the form

[any VarName Literalo ... Literalnj.

Such a variable cannot be bound to a term t unless all the literals that are now fully grounded once t
is substituted for VarName can be proven. Thus the term

[Any ?x [P ?x]]
unifies with a ground term t only if [P t] is provable. Constrained variables can involve complex
constraints using more than one variable. For instance the two variables [any ?x [P ?x ?y]] and
[any ?y [P ?x ?y]] can only be bound, respectively, to terms tl and 2 if [P tl t2] is provable. Since
the variables may not be bound simultaneously, the first one to be bound would further restrict the
possible bindings for the second. For instance, the literal [Q [any ?x [P ?x ?y]] [any ?y [P ?x ?y]]]
could unify with [Q A ?z] to produce [Q A [any ?y [P A ?y]]. This could then unify with [Q A B]
only if [P A B] was provable.

Logically, a literal containing a constrained variable is equivalent to a conditional formula in
FOPC. For example, asserting the literal [P [any ?x [R ?x]] would correspond to asserting the
formula

V' x. R(x) D P(x).

This correspondence can be used to explain the behavior of constrained variables during proofs.
For example, [P A] is provable from [P [any ?x [R ?x]] only if [R A] is provable. This
corresponds to the logical relation that P(A) follows from Vx. R(x) D P(x) only if R(A) is true.

So, while adding constrained variables does not expand the expressive power of the Horn
clause formalism, it provides the system and users with a powerful technique for reordering the
search space for proofs that can result in considerable efficiency gains. This capability will be very
useful later when adding the specialized reasoning systems to RHET. It also allows RHET to
return answers that might not be obtainable using a standard PROLOG strategy. For instance,
RHET could return an answer such as [P [any ?x [Q ?x]] where PROLOG would only be able to
return a list of answers of form [P ac] where [Q a] is provable in the database.

There are several ways that the system could handle the unification of two constrained
variables. It could simply allow any unification and create a new variable with the union of the
constraints from the original variables. Thus [any ?x [P ?x]] and [any ?y [Q ?y]] would unify to a
value [any ?z [P ?z] [Q ?z]]. The problem is that such a solution might be vacuous as there might
be no value that could simultaneously satisfy both constraints. For example, [any ?x [P ?x]] and
[any ?y [Not [P ?y]]] would unify to produce [any ?z [P ?z] [Not [P ?z]]]. On the other hand, it is
not possible for RHET to guarantee that an arbitrary set of constraints is consistent, so RHET uses
a heuristic strategy: if the database contains a term that satisfies all the constraints, the unification is
allowed. Otherwise it fails.
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Negation

The final extension is a limited negation facility. RHET allows literals of the form
[Not Litera]. This is only related to its corresponding positive literal in a limited manner, but the
facility is still quite useful. Negative literals can be used anywhere in axioms and the proof
procedures operate as usual. For example, one could add an axiom

[[Not [Human ?x] < [Not [Mammal .x]]

as the "contrapositive" of All humans are mammals. If we then assert [Not [Mammal George]] then
RHET can prove [Not [Human George]]. Of course, nothing prevents RHET from being able to
prove [Human George] from other axioms in the same database unless RHET provides some
consistency checking. RHET offers only a very limited consistency check: a literal cannot be
added if its negation is already present in the database. Note that many predicates that have special
inter tations do not support a notion of negation. This includes the predicates that are procedural
in nature (e.g. Cut, Rprint, and so on), as well as predicates that interact with the specialized
reasoning systems such as equality, the type system, and so on. In general, not simply fails it it
modified one of these predicates.

So while RHET does not allow what we might call blatant contradiction, it is simple to add
axioms so that a literal and its negative form are both provable. RHET offers the user several proof
modes in order to deal with such situations. In simple proof mode, RHET simply attempts to prove
the literal given as the goal, just as in standard PROLOG. In queston answering (or default) mode,
RHET attempts to prove both the literal and its negation using the sir-2le PROLOG strategy.
Depending on the result of the two proofs, there are four possible answers to a proof of some
literal [P]:

:UNKNOWN - neither P nor [not P] are provable,
[P] (i.e. true) -- P is provable and [not P1 is not,
NIL (i.e. false) - [not P) is provable and P is not, and
:INCONSISTENT - both P and [not P] are provable.

The final mode is Complete reasoning mode. This is like question answering mode, except
that every subgoal also invokes two subproofs: one for its positive version and one for its
negative. Whenever it finds an inconsistency, it simply ignores that predication for the rest of the
proof Thus, if there is some other way to prove the formula not involving the inconsistency, then
the answer might return true. If there is no other way to prove the formula, the answer would be
:UNKNOWN.This last version can be very expensive but guarantees that a goal is not proven
using any provably inconsistent assertions. As an example, consider what can be proved in the
different modes given the following database of axioms:

[P], [[Q] < [P1], [[not Q] < [P]], [not R], [[S] < [Q]].

Figure 1 indicates the results of trying to prove [P], [Q], [R]. [S] and [I in the three different
proof modes. When trying to prove [S] in complete mode, RHET enters the debugger when the
inconsistency based on [Q] is found. If you allow the proof to continue from this point, it will
return :UNKNOWN since there is no other way to prove [S] or [not S].
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Goal :simple mode :default mode :complete mode
[I'p IP [Pl [Pl

rRl NIL NIL NIL
r ] 01 :INCONSISTENT :INCONSISTENT

[S] [S] IS] Debugger
T :UNKNOWN :UNKNOWN :UNKNOWN

Figure 1: The results of proofs in the three proof modes

2.1 Syntax
As seen above, forward chaining axioms are identical in form to backwards chaining

axioms except for the keyword and the specification of the triggers. Repeating the definition from
above, the general form is

(Head Index Literal1 ... Literaln :forward Triggerl ... Triggerm].

If no trigger is specified, the every literal on the right hand side of the axiom acts as a trigger.
When a forward chaining axiom is applied, the literals on right hand side are only checked

by unification into the database. In particular, the backwards chaining prover is not invoked while
using a forward chaining axiom. For example, if we had the forward chaining axioms above, plus
a backwards chaining axiom such as

[[On ?x ?y] < [TopTouchesBottom ?x ?y]]

and the literal [TopTouchesBottom A B] was in the database. Then if we added [On B C] to the
database, axiom 1 would apply and add [Above B C]. But axiom 2 would not apply since [On A
B] is not in the database, even though it is provable. In order to allow the backwards chaining
prover to be invoked while forward chaining, a builtin predicate is provided that corresponds to the
previously described LISP function prove:

[Prove Form]
Succeeds if Form can be proven using backwards chaining. Any variables bound in the
query form to make the proof succeed will remain bound.

For example, if we have the backward chaining axioms above and following forward chaining
axioms:

Head Right Hand Side Trigger
[[Above ?x ?y] <1 [On ?x ?y] :forward [On ?x ?y]]
[[Above ?x ?y] <2 [Prove [On ?x ?z]] [Above ?z ?y] :forward [Above ?z ?y]]

then adding [On B C] to a database containing [TopTouchesBottom A B] would result in both
[Above B C] and [Above A B] being added to the database.

Constrained variables are introduced using the special form:

[Post Literal]
If the literal is fully grounded, then this succeeds only if the literal is provable. Otherwise,
it succeeds and all unbound variables are bound to any forms that encode the constraint
indicated by the literal.
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For example, consider using the clause

[FindHappyEmployee *x ?yJ < (Post [Employs ?x ?y]] [Happy ?yJ

to prove the goal

(FindHappyEmployee Jack ?y].

The first subgoal [Post [Employs Jack ?y]] succeeds and binds ?y to [any ?z [Employs Jack ?z].
Thus the second subgoal is [Happy [any ?z [Employs Jack ?z]]], which will be provable if there is
an assertion [Happy t in the database such that [Employs Jack t is provable.

One useful builtin predicate uses constraint posting. It succeeds if two terms are distinct
and works even if the terms are originally unbound variables:

[Distinct Terml Term2]
True only if TermI and Term2 are not equal. If either term (or both) are variable(s), this
check is delayed until the variable(s) are bound. [Distinct ?x ?y] is functionally equivalent
to [Post (Unless [EQ? ?x ?y]]]. The predicate is not assertable.

2.2 Using the RHET.2 Subset
All the functions defined in the RHET.1 subset still apply, often with additional optional arguments
to handle the extensions. For example, the function prove is extended with a keyword to indicate
the mode of proof.

(Prove Form &key Mode)
Attempts to prove the specified form using the mode indicated. The default mode is
question-answering mode, :simple indicates simple proof mode (i.e. the normal prolog
strategy) and :complete indicates complete mode.

Assert is extended to handle forward chaining axioms. For example, the above forward
chaining example would be asserted as follows:

(Rassert
[[Above ?x ?y] <1 [On ?x ?y] :forward]
[[Above ?x ?y] <2 [On ?x ?z] [Above ?z ?y] :forward [Above ?z ?y]]

The builtin predicate Distinct defined above could be defined as follows:

(Rassert [[MyDistinct ?x ?y] <3 [Post [Unless [EQ? ?x ?y]]]).

Note also that since we can now assert the negation of some fact, it may be that a fact
cannot be added to the database because its negation is already in the database, and thus adding the
fact would make the database inconsistent. Rassert is defined so that the contradictory
information is retracted and the new facts are added.

The RHET predicates dealing with asserting facts handle inconsistencies in different ways.
For example, if one uses Assert-Axioms or Assert-Fact to add a fact, then before RHET adds
the fact, it tries to prove its negation. If its negation can be proved, then RHET enters the
debugger. The builtin predicate Assert-if-Consistent, on the other hand, only adds a fact if it is
consistent, and otherwise quietly fails. To summarize, we have the following:
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[Assert-Axioms Axiomi ... AxiomN]

[Assert-Fact Factl ... FactN]
These add the specified axioms into the database just as specified in section 1. If the
negation of one of the facts already exists in the database, however, then RHET enters the
debugger. If you do not want this behavior, you should either use Assert-if-Consistent
below, or explicitly test for consistency before adding a fact.

[Assert-if-Consistent Axiomi ... AxiomN]

Succeeds and adds the specified axioms (or facts) if none of them cause a detectable
inconsistency when added. If an inconsistency is detected, none are added and the predicate
fails.

Because of the limitations of Horn-clause proof strategies, not all inconsistencies can be detected
by RHET. But all simple inconsistencies between facts (e.g. trying to add p and [Not p] for any
fact p is always detected).

Since a predicate may have both forward and backwards axioms defined for it, RHET.2
introduces a set of functions for manipulating axioms and tracing that correspond to those in
RHET. 1 for backwards chaining. These are:

(Remove-F-Axioms TriggerPattern)
Retracts all forward chaining axioms whose trigger matches the specified pattern.

(Remove-F-Axioms-By-Index indexExpression)
Retracts all forward chaining axioms with indices that match the index pattern specified

(List-F-Axioms TriggerPauern)
Lists all forward chaining axioms whose trigger matches the specified pattern. (List-F-
Axioms [P &rest ?x]) would list all forward chaining axioms with a trigger with a predicate
name P, while (List-F-Axioms [P A ?y]) would list all forward chaining axioms whose
trigger matches [P A ?y].

(List-F-Axioms-By-Index indexExpression)
This returns a list of all forward chaining axioms that match the specified index pattern.

(Trace-F-Axiom (FC-axiom TriggerPattern) Keyword*)
Traces every forward chaining axiom whose trigger unifies with the specified pattern. As
with Trace-B-Axiom, there are different options for setting trace points and different
actions that can be specified. The default setting is to trace the :call and :return points by
printing a message at the terminal (the :trace option). The other options are as documented
for Trace-B-Axiom in section or in the reference manual. This function can also be used
to set tracing several predicates in one call as with Trace-B-Axiom. If no predicate is
specified, then it returns a list of all forward chaining axioms currently being traced.

(List-Forward-Chained-Facts)
This function returns all the assertions made by forward chaining since the last time this
function was called.
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(UnTrace-F-Axiom &Optional Form)
This function turns off the tracing of forward chaining for any predicate matching the
specified Form.

The default reasoning mode for RHET is the question-answering strategy, i.e. with each
query P it attempts to prove [P] and [Not P]. This can be changed using the function:

(Set-Reasoning-Mode (:Simple :Default :Complete))
This sets the reasoning mode of all proofs (except those that explicitly override the default
by an argument to prove) to the indicated mode.
:Simple - standard PROLOG proof strategy
:Default - the question answering mode - tries to prove the goal and its negation
:Complete - checks every subgoal for inconsistency

2.3 Examples

Here are some examples using the new features.
A person will buy something if it is desirable, they can afford it and they don't own

it already. Let's post the desirable predicate for the demo. This might be useful
if it were very expensive to prove the desirable predicate.

RHET-> (Rassert

[[CouldBuy ?p ?i] < [Desirable ?i] [CanAfford ?p ?i] [Not [Own ?p ?i]]]
; A person can afford something if they have enough money
[[CanAfford ?p ?i] <

[wealth ?p ?w*T-Integer]
[Cost ?i ?price*T-Integer]
[> ?w ?price]]

a forward chaining axiom: if an object costs over $100, then it is desirable
[[desirable ?x I <

[cost ?x ?amt*t-integer]
[> ?amt 1001
:forward [cost ?x ?amt*t-integer]])

(([[DESIRABLE ?X] < [COST ?X ?AMT*T-INTEGER ] [>?AMT*T-INTEGER 100]
:forward [COST ?X ?AMT*T-INTEGER f])

[[SBMB [CANAFFORD ?P ?1U] < [WEALTH ?P ?W*T-INTEGER ]
[COST ?I ?PRICE*T-INTEGER] [>?W*T-INTEGER ?PRICE*T-INTEGERI]

[[SBMB [COULDBUY ?P ?I]] < [DESIRABLE ?l] [CANAFFORD ?P ?I]
[NOT [OWN ?P ?1I11)

turn on forward chaining tracing on the cost predicate
RHET ->(Trace-F-Axiom [Cost &rest ?x])

([[DESIRABLE ?X] < [COST ?X ?AMT*T-INTEGER ] [>?AMT*T-[NTEGER 100]
:forward [COST ?X ?AMT*T-INTEGER 11)

now we add some prices of objects
RHET -> (Rassert [Cost A 1150] [Cost A2 1501 [Cost A3 2001 [Cost A4 500]
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[Cost A5 75] [Cost A6 50])
>MC>Matcbed and Interpreting Axiom

[[DESIRABLE ?X->A1] < [COST ?X->Al ?AMT->150] [> ?AMT->150 100]
:fcrward [COST ?X->A1 ?AMT->150]]

>>Added [DESIRABLE Al <]
With Justifications: [COST Al 150 <)

>FCMfatched and Interpreting Axiom
[[DESIRABLE ?X->A2] < [COST ?X->A2 ?AMT->150] [> ?AMT->150 100]
-forward [COST ?X->A2 ?AMT->1 50]]

>>Added [DESIRABLE A2 <]
With Justifications: [COST A2 150 <]

>FC:>Matched and Interpreting Axiom
[[DESIRABLE ?X->A3] < [COST ?X->A3 ?AMTf->200] [> ?AMT->200 100]
:forward [COST ?X->A3 ?AMT->200]i

>>Added [DESIRABLE A3 <]
With Justifications: [COST A3 200 <]

>FC:>Matched and Interpreting Axiom
[[DESIRABLE ?X->A4] < [COST ?X->A4 ?AMT->500] [> ?AMT->500 100]
:farward [COST ?X->A4 ?AMT->500]]

>>Added [DESIRABLE A4 <]
With Justifications: [COST A4 500 <]

>FC:>Matched and Interpreting Axiom
[[DESIRABLE ?X->A5] < [COST ?X->A5 ?AMT->75] [> ?AMT->75 100]
:forward [COST ?X->A5 ?AMT->75]]

>FC>Matched and Interpreting Axiom
[[DESIRABLE ?X->A6] < [COST ?X->A6 ?AMT->50] [>?AMT->50 100]
:forward [COST ?X->A6 ?AMT->50j1

([COST A6 50 <] [COST A5 75 <] [COST A4 500 <] [COST A3 200 <] [COST A2 150
<] [COST Al. 150 <])

Lets inspect some of the database - here are some facts added by forward chaining

RHET -> (List-Facts [Desirable ?x])
(([DESIRABLE A4 <] [DESIRABLE A3 <] [DESIRABLE A2 <] [DESIRABLE A I1)

If we retract [Cost Al1 150], then [Desirable AlI] is also retracted

RIHET-> (Remove-All [Cost AlI ?x])

NIL

RHET -> (List-Facts [Desirable ?Q]
(([DESIRABLE A4 <] [DESIRABLE A3 <] [DESIRABLE A2 <]))

Lets add it back

RHET -> (Rassert [Cost Al1 150])
>FC>Matched and Interpreting Axiom

[[DESIRABLE ?X->AI] < [COST ?X->AI ?AMT->150] [> ?AMT->150 100]
:forward [COST ?X->A1 ?AMT->l5O]]

([COSTA Al 150 <])
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Here are some facts about wealth and ownership
RHET -> (Rassert

; Jack has $225
[wealth Jack 225]
; Jack already owns Al, doesn't own A3 or A4, and we don't know whether Jack
; owns A2, A4 or A6
[Own Jack Al] [Not [Own Jack A3]] [Not [Own Jack A4]])

(NOT[OWN JACK A4 <] NOT[OWN JACK A3 <] [OWN JACK Al <]
[WEALTH JACK 225 <)

Turning on tracing
RHET -> (Trace-B-Axiom [CanAfford &rest ?x])

([[SBMB [CANAFFORD ?P ?I]] <
[WEALTH ?P ?WT-INTEGER]
[COST ?I ?PRICE*T-INTEGER ]
[ ?W*T-INTEGER ?PRICE*T-INTEGER ]])

Lets find out what we can prove that Jack could buy
RHET -> (Prove-All [CouldBuy Jack ?i])

Matched and Inerpreig Axiom
[[SBMB [CANAFFORD ?P->JACK ?I->A2]] < [WEALTH ?P->JACK ?W*T-INTEGER ]

[COST ?I->A2 ?PRICE*T-INTEGER ] [> ?W'T-INTEGER ?PRCE*T-INTEGER]]
Axiom Succeeds
([[SBMB [CANAFFORD ?P->JACK ?I->A2]] < [WEALTH ?P->JACK ?W->225]

[COST ?I->A2 ?PRICE->150] [> ?W->225 ?PRICE->150]]): NIL
Matched and Interpreting Axiom
[[SBMB [CANAFFORD ?P->JACK ?I->A3]] < [WEALTH ?P->JACK ?W'T-INTEGER ]

[COST ?I->A3 ?PRICE*T-INTEGER ] [> ?W'T-INTEGER ?PRICE*T-INTEGER]]
Axiom Succeeds
([[SBMB [CANAFFORD ?P->JACK ?I->A3]] < [WEALTH ?P->JACK ?W->225)

[COST ?I->A3 ?PRICE->200] [> ?W->225 ?PRICE->200]): NIL
Matched and Interpreting Axiom
[[SBMB [CANAFFORD ?P->JACK ?I->A4]] < [WEALTH ?P->JACK ?W*T-INTEGER ]

[COST ?I->A4 ?PRICE*T-INTEGER ] [> ?W*T-INTEGER ?PRICE*T-INTEGER]]
Axiom Fails
([[SBMB [CANAFFORD ?P->JACK ?I->A4]] < [WEALTH ?P->JACK ?WT-INTEGER ]

[COST ?I->A4 ?PRICEOT-INTEGER] [>?W*T-INTEGER ?PRCE*T-INTEGERI])

([COULDBUY JACK A3])

; Note that A3 is the only answer. RHET also can prove that A4 is not owned by Jack
; but Jack doesn't have enough money to buy A4. RHET cannot prove that Jack
; doesn't own any of the other objects

; Finally, here's a simple example showing the use of constrained variables in queries.
RHET -> (rassert [P a] [Q a])

([Q A <1 [P A <])

RHET -> (prove [P [any ?x [Q ?x]]1)
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[P ?X->A]

2.4 Procedural Uses of Forward Chaining
The forward chaining system can be used to more procedural effect in managing the database by
using builtins on the left hand side of the forward chaining axiom. While this can be done, there is
no truth maintenance for such uses. Thus, retracting the effect of axioms that involve Retract and
other builtins must be done by the programmer. Here is an example of a simple axioms that update
the database to keep track of the wealth and ownership of items when a buy action is performed.
The database starts in the state defined in :he preceding section.
RHET-> (Rassert

to change the ownership information and money possessed
[[And [Retract [Not [Owns ?p ?iI]

[Owns ?p ?i]
[Retract [Wealth ?p ?w*T-Integer]]
[Wealth ?p ?w'*T-Integer]] <

[Not [Owns ?p ?i]]
[Buys ?p ?i]
[Prove [CanAfford ?p ?i]]
[wealth ?p ?w]
[Cost ?i ?price*T-Integer]
[:= ?w' (- ?w ?price)]

:forward [Buys ?p ?i]])

turn on tracing
RHET -> (Trace-F-Axiom [Buys &rest ?x])

([[AND [RETRACT [NOT [OWN ?P ?IJ]] [OWN ?P ?I]
[RETRACT [WEALTH ?P ?W*T-INTEGER]] [WEALTH ?P ?W *T-INTEGER ]
< [NOT [OWN ?P ?]] [BUYS ?P ?I] [PROVE [CANAFFORD ?P ?]]

[WEALTH ?P ?W*T-INTEGER ] [COST ?I ?PRICE*T-INTEGER]
[:= ?W *T-INTEGER (- ?W*T-[NTEGER ?PRICE*T-INTEGER)]

:forward [BUYS ?P ?I]I)
Let's buy A3

RHET -> (Rassert [Buys Jack A3])
>FC:>Matched and Interpreting Axiom

[[AND [RETRACT [NOT [OWN ?P->JACK ?I->A3]]]
(OWN ?P->JACK ?I->A3] [RETRACT [WEALTH ?P->JACK ?W*T-INTEGER ]]

[WEALTH ?P->JACK ?W *T-INTEGER ]] < [NOT [OWN ?P->JACK ?I->A3]]
[BUYS ?P->JACK ?I->A3] [PROVE [CANAFFORD ?P->JACK ?I->A3]I
[WEALTH ?P->JACK ?W'T-INTEGER ] [COST ?I->A3 ?PRICE*T-INTEGER ]
[:= ?W'*T-INTEGER (- ?W'T-INTEGER '9PRICE*T-INTEGER)]
:forward [BUYS ?P->JACK ?I->A31

Matched and Interpreting Axiom [[SBMB [CANAFFORD ?P->JACK ?I->A3]] <
[WEALTH ?P->JACK ?W*T-NTEGER ]

[COST ?I->A3 ?PRICE*T-INTEGER ]
[> ?W'T-INTEGER ?PRICE*T-INTEGER]]
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Axiom Succeeds ([SBMB [CANAFFORD ?P->JACK ?I->A3]1 <
[WEALTH ?P->JACK ?W->225]
[COST ?I->A3 ?PRICE->200]
[> W->225 ?PRICE->200]]): NIL

([BUYS JACK A3 <1)

; See what Jack owns now

RHET -> (List-Facts [own jack ?i])
(([OWN JACK A3 <] [OWN JACK Al <1))

; Now what can be bought? Nothing left!

RHET-> (UnTrace-B-Axiom [CanAfford ?. x ?y])
RHET -> (Prove-All [CouldBuy Jack ?i])

:UNKNOWN
As noted above, RHET does not maintain truth maintenance information

; on builtins so this does not have the desired effect!.
RHET -> (Remove-All [Buys Jack A3])

NIL
; We see that Jack did not get his money back!

RHET -> (Prove (Wealth Jack ?n*T-number])
(WEALTH JACK ?N->25]

3. RHET.3: A Typed Deductive Data Bt

RHET.1 introduced a few basic :./pes in RHET. RHET.3 allows users to define their own
type system for constants and function terms. The type checking is built-in to the unifier which
allows the type system to be used fur considerable efficiency gains.

Here are the basic types introduced so far.

:T-U - a RHET object
:T-LISP - a LISP expression
:T-NUMBER - a number, which is subdivided into

.T-INTEGER - integers
:T-FLOAT - floating point
:T-RATIONAL - rational numbers.

These are system defined types. Figure 2 shows the type hierarchy of the most useful pre-
defined types. By convention, all RHET types start with the prefix "T-". RHET allows the user to
define more complex subtype hierarchies. This includes simple subtype relations as found in many
representation systems, and also includes many other relations. RHET does not make any
assumptions about type disjointness or force types to be organized into a tree hierarchy. Rather, the
user may explicitly declare any set relationship between two types - including disjointness, subtype
and overlap - and allows the relationship between two types to be uncertain (e.g. either type :A
overlaps type :B or it is a subtype of :B). Figure 3 shows all the possible relationships between
two RHET types.
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T-AnT-Type
T-Set T-U T-Lisp,. T-Type

T-Orthodox-Set T-Atom T-List T-Number

T-Float T-Integer T-Rational

Figure 2: Some pre-defined RHET types

:UNKNOWN

/

:SUBSET and :SUPERSET -OVERLAP :EQUAL DISJOINT

Figure 3: The Type relationships

The system uses constraint propagation techniques to infer the logical consequences of the
information the user asserts. For example, if the user asserts that type :T-A is a subset of type :T-
B, and that :T-B is a subset of type :T-C, then the system infers that :T-A is a subset of type :T-C.
On the other hand, if the user asserts that type :T-D is a subset of type :T-E, and that type :T-F and
type :T-D overlap, then the system infers that type :T-D either overlaps or is a subset of type :T-F.
Even though this conclusion is disjunctive, it is still useful to the system. In particular, the system
knows that, whatever the actual relationship, two variables of type :T-D and type :T-F,
respectively, should unify. The resulting variable would have as its type the non-null intersection
of type :T-D and type :T-F.

The above example shows the need for RHET to explicitly represent the intersection of
types. If :T-A and :T-B are types, then (T-A T-B) is the intersection of the two types. Two
variables ?x*T-A and ?y*T-B unify only if the intersection of their types, (T-A T-B), is non-
empty. In many cases, the intersection of types can be simplified:
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If :T-A is a subset of :T-B, then (T-A T-B) = :T-A

If :T-A is disjoint from :T-B, then (T-A T-B) is the empty set

If :T-A equals :T-B, then (T-A T-B) = :T-A = :T-B.

RHET also supports set subtraction for types. In particular, a term could be defined to be
of type :T-ANIMAL but not a :T-DOG. This would be expressed in RHET by the type

(T-ANIMAL - T-DOG).

The general form for a complex type is

(T1 ... Tn - Si ... Sm)

which is the intersection of T1 through Tn minus the union of S I through Sm. Using standard set
notation this is (TI n T2 .. n Tn) - (SI u S2 ... u Sm).

Functions can also be typed in RHET, and the type of a specific function term may be
dependent on the types of its arguments. For example, the function Spouse might be defined so
that if the argument is of type :T-MAN, then the function is :T-WOMAN, whereas if the argument
is :T-WOMAN, then the value is :T-MAN. Due to implementation considerations, a function must
always first be defined by a most general definition. In the case of Spouse, this might be that an
argument of type :T-HUMAN produces a value of type :T-HUMAN. In general, an arbitrary
number of type constraints can be defined for a single function, as long as they are consistent with
each other. A way to formalize this constraint is to view each type constraint as a horn clause of the
form:

Argl-Constraint ... Argn-Constraint -> Value-Constraint.

For the Spouse function defined above, the constraints would be written as
(Cl) :T-HUMAN -> :T-HUMAN
(C2) :T-MAN -> :T-WOMAN
(C3) :T-WOMAN -> :T-MAN

To compute the type of a function [F X] given the definition of P and the type of X, each of
the horn clauses defining F whose argument constraint intersects with the type of X contributes a
constraint on the value. These constraints on the value are combined by intersection. For example,
with the example Spouse, if JACK is a :T-MAN (a subtype of :T-HUMAN), then the type of
[Spouse JACK] would be constrained to be of type :T-HUMAN (by rule Cl), and of type :T-
WOMAN (by rule C2). Thus the type of [Spouse JACK] is (T-WOMAN T-HUMAN) = :T-
WOMAN. If we then added that academics only marry academics, i.e.

(C4) :T-ACADEMIC -> :T-ACADEMIC

then if JACK is of type (T-ACADEMIC T-MAN), then the type of [Spouse JACK] would be the
intersection of :T-HUMAN (constraint Cl), :T-WOMAN (constraint C2) and :T-ACADEMIC
(constraint C4), i.e. (T-HUMAN T-WOMAN T-ACADEMIC) = (T-WOMAN T-ACADEMIC).

RHET also can infer the types of arguments given the type of a function. Thus is we unify
[Spouse ?x:T-HUMAN} with a variable ?y:T-MAN, then the result will be [Spouse ?x:T-
WOMAN]. Similarly, unifying [Spouse ?x:T-HUMANI with ?y*(T-WOMAN T-ACADEMIC)
will produce the desired result, i.e. [Spouse ?x*(T-MAN T-ACADEMIC)].
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3.1 Syntax

As already mentioned above, types are atoms and complex types are of the general form
(TI ... Tn - S1 ... Sm). Any type expression can be attached to a variable using the "*" operator
creating a variable ranging over that type.

Predicates that take a type descriptor as an argument usually accept either a LISP
expression indicating the type, or a variable ranging over the type T-TYPE. For instance, if
[Penny] is a constant defined to be in the intersection of :T-PENGUIN and :T-FEMALE, the
predicate [Type? [Penny] :T-Penguin] will be provable (since the intersection of :T-PENGUIN and
:T-FEMALE is certainly a subtype of :T-PENGUIN). On the other hand, proving [Type? [Penny]
?x*T-TYPE] will bind ?x*T-TYPE to (T-PENGUIN T-FEMALE). A new constant
[PennysDouble] could now be defined by proving [Add-Utype ?x [PennysDouble]] (where ?x is
bound to (T-PENGUIN T-FEMALE) earlier in the proof). Throughout the definitions below,
arguments described as TypeDescriptor will be Lisp atoms or lists (to be converted by RHET into
types) or variables of type :T-TYPE. A complex type descriptor is a list of atoms to be converted
into types, plus possibly the special atom "-" to indicate type subtraction. Thus the list (A B) is
converted into the intersection of :A and :B, while (A B - C) will be converted into the intersection
of :A and :B minus the type :C.

The RHET proof strategy assumes a fixed type hierarchy within any proof. Thus, defining
a type hierarchy must be done externally using the LISP functions described in the following
section

A RHET constant (of type :T-U) may be classified by the user-defined types by asserting
type information for it. RHET distinguishes between the immediate type of a constant, which is the
most specific type that a constant can have (the ITYPE), and a constant simply being of a type in
the sense of belonging to the set denoted by the type (a UTYPE). A third form of type assertion,
called DTYPE for distinguished type, is used by the equality system as described in RHET.4.
As far as RHET.3 is concerned, DTYPE is equivalent to UTYPE. See the RHET.4 tutorial for
more information.

The following predicate is convenient for retrieving type information during proofs.

[Type? Form TypeDescriptor]
This predicate is true if the "best" type of the specified form is the type descriptor. The best
type is the immediate type if it is defined, or the most specific type that applies to the object
if no immediate type is defined. Either argument may be a variable. If the Form is a
variable, the predicate will successively return all objects that are defined of the indicated
type. If the type descriptor is a variable of type :T-TYPE, it is bound to the best description
of the form. For instance, if [Penny] is of type :T-PENGUIN and of type :T-FEMALE,
then [Type? [Penny] ?x*T-TYPE] will succeed with ?x bound to
(T-PENGUIN T-FEMALE).

Two predicates are provided that allow the user to query the type hierarchy. Since the type
hierarchy must remain fixed during any proof, these predicates cannot be asserted.
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[SubType? subType superType]
This is true if the type denoted by the Lisp expression subtype is a subtype of the type
denoted by the lisp expression supertype. Thus, [Subtype? :T-Penguin :T-Bird] would
succeed, and [Subtype? ?x*T-Type :T-Bird] could successively return each known subtype
of :T-BIRD as it is used in a proof, yielding a new subtype each time it is backtracked to.

[Type-Relation TypeAtoml Relation TypeAtom2]
This predicate succeeds if the relationship between the type denoted by TypeAtoml and
typeAtom2 is the specified relation. The relation returned is an atom as specified in Figure
2, or a type in the case where the intersection is named by the user (see T-name-
intersect). Thus if :T-PENGUIN is a subtype of :T-BIRD, the [Type-Relation :T-
PENGUIN ?x*T-Lisp :T-BIRD] would succeed with the variable ?x bound to :SUBSET.
If the type :T-PET either intersects or is a subtype of :T-BIRD, then [Type-Relation :T-PET
?x*T-Lisp :T-BIRD] would succeed with ?x bound to :NONDISJOINT. If the two types
are related with a named intersection, then ?x will be bound to the name of the type that is
the intersection.

The following predicate that is provided in dealing with types allow the user to create a new
constant of a specified type:

[Skolemize Variable TypeDescriptor]
Succeeds only if the variable is unbound, and binds the variable to a new constant of the
type specified by the type descriptor. It can also be used as a unary predicate: If the type
descriptor is not specified, the variable is bound to a new constant consistent with the
variable's type.

Note also that the EQ? predicate (see section 4) is useful in many cases for checking types.
For instance, if we want to ensure that a variable is of a certain type at some stage of a proof, a
simple way to check this is to see if it unifies with a new variable of that type. For example, to
ensure that a variable ?x is of type :T-DOG, we could simply prove [EQ? ?x ?newvar*T-DOG].

3.2 Using the Type System

Defining Types

While the type system can be inspected, and the type information for terms can be manipulated by
querying and asserting the predicates described above, the type hierarchy itself must be constructed
from outside RHET. The following Lisp functions are used to this:

(Tsubtype typeAtomo typeAtoml ... typeAtomn)
Asserts that each typeAtomi, for i=l to n, is a subtype of typeNameo.

(Toverlap typeAtoml ... typeAtomn)
Asserts that each of the specified types pairwise overlap. This is overlap in the
:NON'DISJOINT sense and does not eliminate the possibility that one type is a subtype of
the other.
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(Tname-Intersect NewTypeAtom typeAtoml ... typeAtomn)
This is typically used with n=2, and defines the new type NewType to be the named
intersection of typeAtoml and typeAtom2. For example, (Tname-Intersect '2DoorCar
'2Door 'Car) would define the type :2DoorCar to be the intersection of :2Door and :Car.
This allows the system to simplify complex types of form (2Door Car) to the simple form
:2DoorCar. This function can also be used to define the intersection of more than two types
as well, although the system must define intermediate types to reduce the n-way
intersection to a series of 2-way intersections.

(Tdisjoint typeAtoml ... typeAtomn)
Asserts that all the specified typenames are pairwise disjoint. For example, (Tdisjoint 'A 'B
'C) will assert that :A is disjoint from :B, :B is disjoint from :C and :A is disjoint from :C.

Function types are defined using the following:

(Define-Fn-Type Fn-Name FunctionSpec*)
This Defines the function named FnAtom to be defined by the set of function
specifications, each of form (TypeAtomi TypeAtom2 ... TypeAtomn) and defines the
function with arguments of type Type2 through Typen to be of type Type,. For example,
the function Spouse discussed above would be defined by
(Define-FN-Type 'Spouse '(T-HUMAN T-HUMAN) '(T-MAN T-WOMAN)

'(T-WOMAN T-MAN) '(T-ACADEMIC T-ACADEMIC))
Because of implementation limitations, there are several restrictions of the set of function

specifications that are allowed. In particular, the first specification should be the most general
declaration (i.e. all subsequent specifications should only involve subtypes of the types used in the
first declaration). Second, the rules should be defined so that they are consistent. That is, two
intersecting types should not map to types that are disjoint, for then a type in the intersection would
not be able to satisfy either constraint. Users interested in defining complex function types should
refer to the reference manual.

Defining the Type of Objects

Two lisp functions are provided for defining the types of objects, differing only in whether the
type is defined as an immediate type of the object or noL

(Add-IType TypeAtom &Rest Term] ... Termn)
This defines the each of the objects listed as terms to have the indicated immediate type.
Because of the definition of immediate type, this means that these constants cannot be a
member of any subtype of the specified type. Thus if T-BIRD has a subtype T-PENGUIN,
(Add-Itype 'T-BIRD [Tweety]) would exclude Tweety from being a Penguin (or any other
subtype of T-BIRD). Typically, ITYPE assertions are only used with types that have no
subtypes.
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(Add-Utype TypeAtom &Rest Term] ... Termn)
This defines each of the objects listed as terms to be of the indicated type (i.e. the object is a
member of the set denoted by the type). This does not preclude the object being a member
of a subtype of the indicated type.

Inspecting Type Information

The following functions are used to delete or inspect the type declarations. The most useful
way to inspect the type hierarchy is the graphic display described in the window interface section,
if available. A very useful function is one that returns the type of an arbitrary RHET term:

(Type-Object Term)
Returns the most specific type for the specified term. If the term contains variables, the
most specific type that includes every instantiation of the variables is returned.

(Type-Relation TypeAtom TypeAtom2)
Returns a keyword or list of keywords indicating the possible relationship(s) between the
two specified types.

(Type-Info TypeAtom)
Returns a list of relationships between the given type and every other type in the system in
the form ((relation 1 typeAtom 1) ... (relationn typeAtomn))

(Type-Function FunctionAtorn)
Returns the function specification for the specified function

(Type-Subtype TypeAtom &key Recursive)
Returns a list of all immediate subtypes of the specified type. If the recursive option is non-
nil, then all subtypes of the type are returned.

(Type-Supertype typeAtom &key recursive)
Returns a list of all immediate supertypes, or all supertypes if Recursive is non-nil.

(RTypes)

Returns a list of all types in the system,

Deleting Type Information

The type hierarchy does not support truth maintenance information, so the consequences of
adding information about a type cannot be retracted easily. The recommended way to modify the
type hierarchy is to completely clear the system using Reset-Rhet and re-add the entire new type
hierarchy and axioms.

Function definitions are independent of each other so can be incrementally updated. The
following functions are provided:

(Clear-AII-Fn-Type)
Removes all the function type declarations so far.
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T-U

T-Animal

T-Fish T-Mammal

T-Cod T-Mackerel T-Whale T-Man

Figure 4: The initial hierarchy

(Remove-Function-Def FnAtom &Rest FunctionSpec*)
Deletes the specified FunctionSpecs from the definition of the function specified. If no
functionSpecs are given, it deletes the entire function definition.

3.3 Examples

These first assertions define a type hierarchy of animals as shown in Figure 4.
RHET -> (Tsubtype 'T-U 'T-Animal)

(NIL)
RHET -> (Tsubtype 'T-animal 'T-fish 'T-mammal)

(NIL NIL)
RHET -> (Tdisjoint 'T-fish 'T-mammal)

(T-FISH T-MAMMAL)
RHET -> (Tsubtype 'T-fish 'T-cod 'T-mackerel)

(NIL NIL)
RHET -> (Tsubtype 'T-mammal 'T-man 'T-whale)

(NIL NIL)
;System can infer that Mammals are disjoint from Cod:
RHET -> (Type-Relation 'T-mammal 'T-cod)

:DISJOINT
;Now we add a different hierarchy based on where animals live
RHET -> (tsubtype 'T-Animal 'T-SeaDweller)

(NIL)
RHET -> (tsubtype 'T-SeaDweller 'T-fish 'T-whale)

(NIL NIL)
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T-Anixnal

T-SeaDweller T-Mafnmal

T-Fish

T-SeaDwellingMaxnmal 
-a

T-Cod T-Mackerel

T-Whale

Figure 5: After defining sea dwellers

RHET -> (tname-intersect T-SeaDwellingMammal T-mammal T-seadweller)

NIL
;System can infer that :Cod is a subtype of (T-animal T-SeaDweller):
RHET -> (type-compatiblep 'T-cod '(T-Animal T-seadweller))

*(T4(JD)
and that whales are sea dwelling mammals

RH-ET -> (type-compatiblep T-whale 'T-SeaDwellingMammal)

(:SUBSET :EQUAL)
Let's define some individuals

RHET -> (add-Itype 'T-Cod [Homer])

([HOMER])
RHET -> (add-Itype 'T-Whale [Willie])

((WIILLIE])
;Now some facts about the world
RI-ET -> (Rassert [[LivelnSea ?x*T-SeaDweller] <1] [[BearLiveYoung ?m*T-marnmal] <21)

([[SBMB [BEARLIVEYQUNG ?M*T-MAMMAL 1]1< [[SBMB [LIVEINSEA ?X*T-
SEADWELLER ]] <1])

RHET -> (Trace-B-Axiom [LivelnSea &rest ?x] [BearLiveYoung &rest NxI)

([[SBMB (BEARLIVEYQUNG ?M*'T-MAMMAL]]1 <21 f[SBMB [LWVEINSEA ?X*T-
SEADWELLER ]] <1])

Ri-ET -> (prove (and [liveinsea ?x*T-animal] [bearliveyoung ?x*T-animal1])

Matched and Interpreting Axiom [[SBMB [LIVEINSEA ?X*T-SEADWELLER 11 <1]
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Axiom Succeeds ([[SBMB [LIVEINSEA ?X*T-SEADWELLER ]]1<1]): (:TRUE)
Matched and Interpreting Axiom [[SBMB3 [BEARLWVEYOUNG ?M*T-SEADWELUINGMAMMAL ]l1<2]
Axiom Succeeds ([[SBMB [BEARLIVEYQUNG ?M*T-SEADWAELLINGMAMMAL 1] <2]): (:TRUE)
[AND [LIVEINSEA ?X->?M*T-SEADWELLINGMAMMAL]I [BEARLIVEYQUNG ?X-

>?M*T-SEADWELLINGMAMMAL I]
;more specifically, willie lives in the sea and bears live young
RHET ->(,prove [and [liveinsca [willie]] [bearliveyoung [willie]]])

Matched and Interpreting Axiom [[SBMB IIIVEINSEA ?X->[ WILLIE]]] 41]
Axiom Succeeds ([[SBMB IILVEINSEA ?X->[W ILLI~l]l <1]) :(:TRUE)
Matched and Interpreting Axiomn [[SBMB [BEARLIVEYQUNG ?M.>[ WILE]]] <2]
Axiom Succeeds (ffSBMB [BEARLIVEYQUNG ?M->[WILIE]]l] <2]): (:TRUE)
[AND [LWEINSEA [WILLIE]] [BEARLIVEYQUNG [WILE]]]

Now lets define some functions. Men catch SeaDwellers. More specifically

whalers catch whales and fishermen catch fish.
RHET ->(tsubtype 'T-man 'T7-fisherman 'T-whaler)

(NIL NIL)
RHET -> (Deflne-fn-type 'catch 'Cr-man T-seadweller) 'Cr-fishermnan T-fish)

'Cr-whaler T-whale))
(CATCH Cr-MAN T-SEADWELLER) (T-FISHERMAN T-FISH) Cr-WHALER

T-WHALE))
;Might a man catch a whale? Yes, if he's a Whaler.
RHET ->(prove [eq? [catch ?x*T-man] ?y*T-whale])

[EQ? [CATCH ?X*T-WHALER ] ?Y->[CATCH ?X*T-WHALER]
;Define some men
RHET -> (add-Utype T-whaler [jack])

([JACK])
RHET -> (add-Utype 'T-fisherman [john])

([JOHN])
RHET -> (add-Utype 't-man [jake])

([JAKE])
JIs whatever Jack catches an animal that bears live young?
RHET -> (prove [bearliveyoung [catch jack]])

Matched and Interpreting Axiom HISBMB [BEARLIVEYQUNG ?M->[CATCH JACK]]] <21
Axiom Succeeds ([[SBMB [BEARLIVEYQUNG ?M->CATCH JACK]]] <2]): (:TRUE)
[BEARLIVEYQUNG [CATCH JACK]]

;How about John?
RHET -> (prove [bearliveyoung [catch john]])

:UNKNOWN
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;Does Jake?
RHET -> (prove [bearliveyoung [catch jake]])

.UNKNOWN

Finally, here's the code to test the definition of the Spouse function described above

RHET -> (reset-rhet)
:DEFAULT

RHET -> (Tsubtype 7-u 'T-human)

(NIL)
RHET -> (Tsubtype 7-human 7-woman 7-man 7-academic)

(NIL NIL NIL)
RHET -> (Tdisjoint 7-woman 'T-man)

(T-WQMAN T-MAN)
RHET -> (Toverlap 7-woman 7r-academic)

NIIL
RHET -> (Toverlap 'T-man Tr-academic)

NIL
RHET -> (define-fn-type 'spouse'(T-Human T-human) '(T-man T-woman)

'(T-woman T-man) '(T-academic T-academic))

(SPOUSE (T-W -. 4 N T-HUMAN) (T-MAN T-WOMAN) (T-WOMAN T-MAN) cr-
ACADEMNIC T-ACADEMIC)

RHET -> (add-utype t-man [Jack))

([JACK])
RHET -> (prove [Type? [spouse jack] ?x*T-type])

TPE? [SPOUSE JACK] ?X->*T-WOMAN]
Here's another way to test the type of [Spouse jack]

R}IET -> (prove [eq? [Spouse jack] ?x*T-woman])
[EQ? [SPOUSE JACK] ?X->[SPOUSE JACK]]

If we now assert that jack is also an academic, the type of [spouse jack] is refined as well

RHET -> (add-utype 'T-academic [jack])

([JACK])
RHET -> (prove [Type? [spouse jack] ?x*T-typeI)

[TYPE? [SPOUSE JACK] ?X->*(T-WOMAN T-ACADEMIIC)]1

3.4 Additional Functions

(Add-FN-Type FunctionA torn (TypeO Typel .. Typen)*)
This allows you to incrementally add to a fanction definition. See the reference manual for
details.
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(Type-CompatibleP TypeDescriptorl TypeDescriptor2)
Returns NIL if the first type is not a subset or equal to the second type. Otherwise, it
returns the relationship between the types: (:EQUAL), (:SUBSET), (:SUBSET :EQUAL),
or a named intersection.

(Type-ExciusiveP TypeDescriptorl TypeDescriptor2)
Returns T if the two types are provably disjoint.

(Type-IntersectP TypeDescriptorl TypeDescriptor2)
Succeeds only if the two types have a named intersection. If the two types intersect, but no
name is defined, it returns nil. Thus (Type-IntersectP TI T2) is not equivalent to (NOT
(Type-ExclusiveP TI T2)).

Finally, two built-in predicates are defined for defining new instances of types as the result
of forward chaining. These predicates can only be used for adding information.

[Add-ITYPE TypeAtom &Rest Term] ... Termn]
This predicate defines the listed terms as being of the indicated immediate type. See the lisp
function Add-IType for more details. It cannot be used to query the type of an object. To
do this, use the builtin predicate Type?.

[Add-UTYPE TypeAtom &Rest Term] ... Termn]
This predicate defines the listed terms as being of the indicated type. See the lisp function
Add-UType for more details. It cannot be used to query the type of an object. To do this,
use the builtin predicate Type?.

4. RHET.4: Equality and Inequality

RHET.4 introduces the ability to reason about equality and, conversely, about inequality. Two
terms in RHET may be known to be equal, may be known to be distinct (not equal), or not known
to be either equal or not-equal. RHET only allows equality assertions between terms of type :T-U,
and not between terms of other types such a :T-NLMBER or :T-LISP. RHET.4 uses a generalized
unification algorithm: Two terms t] and t2 unify if they can be proven to be equal. If they contain
variables, they unify if there is a substitution that makes the two terms equal.

Due to implementation considerations RHET cannot store equality assertions that contain
variables. All assertions must involve fully ground terms. Even with this restriction, the situation is
complex. For example, if one adds that [F A] is equal to A, then one has actually defined an
infinite set of equalities: A equals [F A] equals [F [F A]] equals [F [F [F A]] and so on. RHET
handles such equalities and any other equality assertions possible between two ground terms. In
addition, individual equality assertions are not retractable, since there is no truth maintenance
facility available for equality assertions (but see contexts in RHET.7).

Terms in RHET can be classified into equivalence classes based on the equality relation.
Each equivalence class has one term in its class defined as Primary. This is determined by the
system, and typically is the one of the simplest members of the class (i.e. a term that is an atom).
RHETs default operation is to use the primary term in the pretty printer for any term in its
equivalence class. If this is not desired, set the variable *Print-FN-Term-Pretty* to nil.

One may also declare two terms to be not-equal. It would be inconsistent to assert that two
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terms are equal if they are already asserted to be not-equal, and vice versa. While individual terms
can be explicitly asserted to be non-equal, the more useful way of asserting inequality is by using
the type system and declaring them to be members of disjoint types, or by declaring them as
distinguished individuals of the same type (see Add-Dtype below).

Unification with equality has some significant differences from unification without
equality. This is most noticeable when unifying function terms. For example, say we want to unify
[P [Mother Jack]] with [P [Mother ?x]]. Under normal unification the most general unifier would
have ?x bound to Jack and the result would be [P [Mother Jack]]. But this is not the most general
unifier in a system with equality. In particular, if we know that Jack and Jill have the same mother,
i.e. [Mother Jack]=[Mother Jill], then Jill is another possible binding for ?x in the unification
above! This is a serious problem since the proof strategy depends on being able to find a most
general unifier. RHET addresses this problem by allowing the unification but not binding the
variable. Rather the variable is constrained so that any binding later assigned must satisfy this
unification. In particular, the most general unifier of [P [Mother Jack]] and [P [Mother ?x]] will be

[P [Mother [any ?xl [EQ [Mother ?xl] [Mother Jack]]]]].
This has the desired effect. The variable ?xl can be bound to a constant later in the proof only if the
equality constraint is satisfied. Such forms, however, can be annoying in final answers, especially
when there is only one object in the database that satisfies the constraint anyway. RHET provides a
predicate One-of that takes such forms containing constrained variables and produces a form with
the variable bound to a constant that satisfies the constraint. All of the constants can be obtained
eventually by backtracking to this function.

4.1 Syntax

Only minor extensions are required to the RHET syntax as most changes to the system are
internal. All the predicates defined previously handle equality automatically. Here we list only a
few of the most important ones.

[EQ? term] term2]
Succeeds if the two specified terms are equal, or there is a substitution of variables that
makes them equal. The may be used to assert equality relationships between terms of type
:T-U. Equality between numbers and other types may be tested but not added. Note the
relationship between EQ?, Unify, and Identical:
[Identical tl t2] entails [Unify tl t2] entails [EQ? tl t2].

[Unify term] term2]
Succeeds if the two terms unify without equality, i.e. this is the standard unification
algorithm in PROLOG.

[NotEQ? term) rerm2]
Succeeds if the two terms are provably not equal. This is identical to
[Not [Eq? terml term2]] but is not equivalent to [Unless [EQ? terml term2]], which is
true if RHET cannot prove that terml equals term2.
Note that the following formulas are all different and are related in the indicated way:
[NotEQ? tl t2] entails [Unless [EQ? tl t2]] entails [Unless [Unify tl t2]] entails [Unless
[Identical tl t21]
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[One-Of form] form2]
Succeeds ifform) is a ground version ofform2,form2 being a function term in the KB.
For example: assume we asserted (add-eq [f a] [f b]). Then the result of unifying [f ?x]
with [f a] in a proof would bind ?x to [any ?y [eq? [f ?y] [f all], e.g.,
RHET -> (prove [eq? [f ?x] [f a]])

[EQ? [F [ANY ?X [EQ? [F ?X] [F B]]]] [F A]].
On the other hand, proving [one-of [f ?z] [f a]]) will first bind ?z to a particular value, e.g.,
RHET -> (prove [one-of [F ?x] [F a]])

[ONE-OF [F ?X->A] [F A]]
RHET -> (prove-all [one-of [F ?x] [F a]])

([ONE-OF [F B] [F A]] [ONE-OF [F A] [F A]]).

A large number of InEQ? relationships can be inferred by RHET as the result of constants being of
types that are declared to be disjoint. Objects of the same type can be defined to be not equal using
the predicate:

[Add-Dtype TypeDescriptor Terml ... Termn]
This is equivalent to [Add-Utype Typedescriptor Term1 ... Termn] except that each term is
implicitly declared to be non-equal to any other term also declared to have a Dtype of the
specified type.

4.2 Using RHET.4

The following functions are available for using the equality subsystem.

Adding Equalities and Inequalities

The direct way to add equalities or inequalities is to simply assert facts involving the eq? and
noteq? predicates. In addition, the following functions are available from the lisp interface. When
adding an equality (or inequality) RHET checks for explicit contradictions (i.e. the negation has
been asserted) and for type consistency (i.e. two objects with disjoint types cannot be made equal).

(Add-EQ Groundferml Groundlerm2)
Adds an equality assertion between the two ground terms if it is consistent to do so.
Returns nil if the equality would cause an inconsistency or if the terms are not fully
grounded.

(Add-InEq GroundTerml Groundierm2)
Adds an inequality assertion between the two ground terms if it consistent to do so.
Returns nil if the inequality would cause an inconsistency or if the terms are not fully
grounded.

(Add-Dtype TypeDescriptor Terml ... Termn)
This declares the specified terms as distinguished terms of the specified class, the same as
the predicate Dtype. Thus each of the terms specified are known to be not equal to any
other term declared to be a Dtype of the specified type.
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Inspecting the Equality Database

(Equivclass GroundTerm)
Returns a list of all ground terms explicitly asserted equal to the specified term. Note that if
the variable *print-fn-term-pretty* is non-nil, then each member may be printed using
the same name. Setting *print-fn-term-pretty* to nil prints each term in its original
form.

(Equivclass-V Term)
This is a version of Equivclass that allows variables. It returns a list of all terms that
could be equal to the specified term together with the variable binding information required
for each term.

(Inequivset GroundTerm)
Returns a list of all terms that have been declared explicitly not equal to the specified term.
There may be other terms that are provably not equal based on type incompatibility and
from Dtype assertions.

Tracing Proofs Involving Equality

(Trace-EQ-Object Term Keyword*)
This function traces changes to equality relationships on the specified term. If no term is
specified, all terms are traced. As before, options can be specified that specifying what to
trace and what action to take at each trace point. The possible trace points are:

:EQ - Trace changes to the terms equivalence class
:INEQ - Trace changes to the set of terms not equal to traced term
:CLOSURE - Trace changes to any term that references this term

The actions are
:TRACE - print a diagnostic message
:BREAK - invoke a break loop
:DEBUG - invoke the debugger

The default trace settings are :eq :trace :ineq :trace. For example, (Trace-EQ-Object [A])
will cause a message to be printed any time [A]'s equivalence class is changed, or any new
inequality assertions are made involving [A].

(Trace-Request Term*)
This function causes a trace message to be printed every time the equivalence class of one
of the indicated terms is involved in an equality assertion. For example:
RHET->(trace-request [a])
([A])
RHET->(Rassert [EQ? [f a] [p b]])
Adding Equality between [F A] and [P B] in context SBMB-T
:EQ
RHET->(Rassert [EQ? [p b] [g c]])
Adding Equality between [P B] and [G C1 in context SBMB-T
:EQ
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R.HET->(Rassert [EQ? [t u] [f g]])
:EQ
RHET->

(UnTrace-EQ-Object Term]). Termn)
Turns off tracing on the specified terms, or on all terms if no argument is specified.

(Untrace-Request Term*)
Turns off request tracing of the indicated terms.

4.3 Examples

;consider two companies and a function that maps employees to their bosses
RHET-> (Tsubtype'T-U 'T-Human)

(NIL)
RHET-> (Define-Fn-Type 'Boss 'CT-Human T-Human))

(BOSS (T-HUMAN T-HUMAN))
A, B, C, D, E, F, and G are humans. Neither E, F, or G can be
equal to each other, and A cannot equal E

RHET-> (Add-IType T-Human [A] [B] [C] [D])
([A] [B] [C] [D])

RHET-> (Add-Dtype 'T-Human [E] [F] [G])
([E] [F] [G])

RHET->(add-Ineq [A] [E])
T

Lets add some equalities to define the Boss function
RHET-> (Rassert [EQ? [Boss A] [El)

(NEL)
RHET-> (Rassert [EQ? [Boss B] [E]])

(NIL)
RHET-> (Rassert [EQ? [Boss C] [F]])

(NIL)
RHET-> (Rassert [EQ? [Boss D] [F]])

(NIL)
;Some properties
;E is a generous boss and A, C and G work as programmers

RHET-> (Rassert [[Generous El <.DATA]
[[Programmer A] <DATA]
[[Programmer C] <DATA]
[(Programmer 0] <DATA])
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([PROGRAMMER G <DATA] [PROGRAMMER C <DATA] [PROGRAMMER A
<DATA] [GENEROUS E <DATA])

; What is the equivalence class for [Boss A]?
RHET-> (Equivclass [Boss A])

([E] [E] [E])
each is printed using the "best" name - to get the actual terms we set *print-fn-term-pretty*

RHET-> (setq *print-fn-term-pretty* nil)
NIL

RHET-> (Equivclass [Boss A])
([BOSS B] [BOSS A] [El)

Is anyone who has a generous boss a programmer? Note that
the proof uses the any function to construct a most general unifier

RHET -> (trace-request [a] [b] [c] [d] [e] [fl [g])
([A] [B] [C] [D] [E] [F] [G])

RHET->(Prove [Generous [Boss ?x*T-Human]] [Programmer ?x])
Attempt to prove [EQ? [BOSS ?X->A] El
Proved [EQ? [BOSS ?X->A] E] as T
Proved [PROGRAMMER ?X->A] as T

[AND [GENEROUS [BOSS ?X->A]] [PROGRAMMER ?X->A]]
Can we add that A equals C? No, because that would entail that

[Boss A]=[Boss C1 and hence E=F, a contradiction
RHET-> (Rassert [EQ? [A] [C]])

Adding Equality between [C] and [A] in context SBMB-T
Debug: When combining [A] and [C] into [C], rhet ran into a problem:
unioning these classes will force rhet to union [E] and [F] which are not compatible as
[E] contains [BOSS D] and [F] contains [BOSS B].
[condition type: RHET-EQUALITY-PROBLEM]

Restart actions (select using :continue):
0: Back out the entire equality
1: Ignore the problem, make things inconsistent, continue adding the equality
2: Invoke Rhet debugger
3: Retry adding equality of [A] and [C]

[1] RHET -> :cont 0

NIL

So the equality assertion is not allowed even though RHET doesn't explicitly know that [A] is
; not equal to [C].

RHET-> (InEquivSet [A])

([E])
Is someone their own boss? Don't know.

RHET-> (Prove [EQ? [Boss ?x*T-Human] ?x])
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NEL
; Finally consider the differences between EQ? and unify
; [Boss A] equals [Boss B]:
RHET-> (prove [EQ? [Boss A] [Boss B]])

[EQ? [BOSS A] [BOSS B]]
; does anyone have the same boss as A: yes, and an any function is used to produce the most

; general unifier
RHET-> (prove [EQ? [Boss A] [Boss ?x*T-Human]])

[EQ? [BOSS A] [BOSS [ANY ?X*T-HUMAN [EQ? [BOSS ?X*T-HUMAN] E]]]]
who can be the boss of someone -a simple unification allowed by the function typing

RHET-> (prove [EQ? [Boss ?x*T-Human] ?y*T-Human]])

[EQ? [BOSS ?X*T-HUMAN ] ?Y->[BOSS ?X*T-HUMAN]]
Same examples with the unify predicate. Since it does not use equality, the first fails

RHET-> (prove [Unify [Boss A] [Boss B]])

NIL
The second succeeds with ?x bound to A (not shown in answer)

RHET-> (prove [Unify [Boss A] [Boss ?x]])

T
and the third succeeds using straight typed unification

RHET-> (prove [Unify [Boss ?x*T-Human] ?y*T-Human])

[BOSS ?X*T-HUMAN ]

5. RHET.5: RHET and LISP

While RHET functions are called from Lisp, we have not yet seen an ability to use Lisp functions
during proofs, or to have RHET predicates defined by Lisp expressions rather than axioms.
RHET.5 introduces this facility. There are basically three ways to invoke Lisp during a RJET
proof. The first involves evaluating a list constructed in RHET as Lisp expression, the second
involves defining a RHET predicate by a Lisp function, and the third involves defining a new
builtin predicate. This last technique requires a greater understanding of RHET internals and is
described in the RHET programmers guide; the others are described here. The techniques differ
primarily in the way that backtracking is handled, whether it makes sense to assert such predicates,
and how they handle side-effects.

5.1 Predicates that call Lisp

There are three new predicates providing simple ways to evaluate lists as Lisp expressions
during a proof. In all cases, any variables in the list are first replaced by their bindings, and then
the list is evaluated as a Lisp expression. These lists will be called LispExpressions below even
though they technically aren't Lisp expressions since they contain RHET variables.
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[Call LispExpression]
Rhet replaces any variables in the list with their bindings and then evaluates the list as a
Lisp expression. If it returns a non-nil value, the predicate succeeds. If the Lisp expression
binds a RHET variable (see example section) during execution, then the RHET variable
remains bound as the proof continues. If a proof backtracks to a call, it fails and any
variables bound by the function are restored to their original state.

[SetValue Term LispExpression]
Succeeds only if the specified term unifies with the value returned by the Lisp expression.
If the proof backtracks to this predicate, it fails and the Lisp expression is not re-evaluated.
For example, assuming ?y*T-Number is bound to 3, the predicate [SetValue ?x*T-Number
(Add 1 ?y*T-Number)] would succeed and bind ?x to 4. If ?y was not bound, then this
would result in a Lisp execution error since AddI would have been passed a non-numeric
argument. Thus one must either make sure that variables are bound or define Lisp functions
that can deal with unbound RHET variables in some way. This will be discussed in more
detail below. This predicate can also be used to set multiple variables at once. For details,
see the reference manual.

[GenValue Term LispExpression]
This predicate is the same as SetValue except that the Lisp expression should return a list of
values for the term. The term is unified to the first value on the list and the other values are
saved for backtracking, when the term is bound to the next value on the list until the list is
exhausted, at which point the predicate fails. Genvalue can be used to recursively invoke
the prover. For example,

[Genvalue ?x (Prove-all [P ?y])]
would bind ?x successively to each answer returned by Prove-all. This predicate can
also be used to set multiple variables at once. For details, see the reference manual.

5.2 Lisp Functions and RHET
The above predicates can be used to evaluate Lisp expressions and bind variables during proofs.
They can be tested in axioms just like any other predicate. It does not make sense, however, to add
such predicates to the database, so they are not assertable.

A more powerful facility allows the user to define RHET predicates directly by Lisp
functions. This also allows the user to define the effects of asserting such a predicate by means of
another Lisp function. This capability does not support backtracking, however. To define a
predicate in Lisp that supports backtracking, one must define new builtin predicates as described in
the programmer's guide.

(Declare-Lispfn Name Query-Function-Symbol &Optional Assert-Function-Symbol)
This defines a predicate of the specified name by the specified Lisp functions. Rather than
attempting to prove a literal with the specified predicate name, RHET will replace the
variables with their bindings and pass the entire variable list to the specified Lisp Query-
Function-Symbol as its argument. If all the variables are not bound, then RHET does not
call the Lisp function and simply fails. Similarly, if the predicate is asserted, the argument
list is passed to the Lisp function Assert-Function-Symbol. If you want to write a Lisp
function to manipulate unbound variables, then see the Call predicate above.
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Of course, all the Lisp functions defined so far can be used in any Lisp function. In
addition to those, the following new functions allow the programmer to explicitly manipulate
RHET variables and structures in applications of the Call predicate.

(Rvariable-P Lispobject)
returns non-nil if the argument is an unbound RHET variable

(Type-Object RhetVar)
Returns the variable type (see section 4.1).

(Unify Form] Form2)
Unifies the two specified RHET forms, destructively binding any variables (so when the
Lisp function returns to RHET the variables have changed). Warning: The programmer
must be very careful in binding variables within a Lisp function. It is much better to bind
variables using the SetValue or GenValue builtin predicates if possible. See section 4.1.

(E-Unify Form) Form2)
This is the equivalent of the RHET predicate EQ?. Warning: The programmer must be very
careful in binding variables within a Lisp function. It is much better to bind variables using
the SetValue or GenValue builtin predicates if possible.

There are also functions that allow a Lisp program to construct new RHET objects. Note
that if the reader is set to Rhet mode, RHET objects can be created in Lisp code using the standard
reader macros as well: ? constructs a RHET variable, and [ ...] constructs RHET forms and
axioms. But often the programmer will need to create R-ET structures dynamically. The foldowing
functions allow for this:

(Create-Rvariable Pretty-Name &Optional (Type *T-U-4TfPE-STRUCT*))
Returns a new RHET variable of the indicated name and type, where the type can be
constructed using Make-I-Type. The pretty-name is the string that will be printed for the
variable, and hence should begin with "?"

(Make-I-Type TypeDescriptor &Optional Permissive)
Converts the type descriptor into an internal type. Unless Permissive is non-nil, this will
return nil unless all types are declared.

(Cons-Rhet-Form Head &rest Arglist)
Returns a standard RHET form specified by the arguments. For example,

(Cons-RHET-Form 'P 'A)
returns

[P A],
while

(Cons-RHET-Form 'P '(A B)
(Create-Rvariable "?x" (Make-I-Type T-Human)))

returns
[P (A B) ?x*T-Human].
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(Cons-RHET-Axiom HeadForm &Rest Form] .,. Formn)
Returns a standard RHET bc-axiom given a list specification. For example,

(Let ((var-x (Create-Rvariable "?x" (Make-I-Type T-Human))))
(Cons-RHET-Axiom (Cons-RHET-Form 'P var-x)

(Cons-RHET-Form 'Q var-x)))
returns the axiom

[[P ?x*T-Human] < [Q ?x*T-Human]]
This could now be asserted using Rassert.

Here's an example of how one might use these functions to create calls to RHET within a Lisp
program and then extract answers. Say we have a Lisp variable x and wish to query RHET to find
the values of a variable ?y*T-Human such that [P x ?y] is true. We can't simply do

(prove [P x ?y])
as the "x" will be interpreted as a RHET constant rather than a Lisp variable. Rather we have to
build the query using the above functions. But the following will return the value for ?y:

(let ((y-var (create-rvariable "?y" (Make-I-Type 'T-Human))))
(prove (cons-rhet-form 'p x y-var))
(get-binding y-var))

5.3 Examples
Here's a simple example of the use of Setvalue. The predicate P is true of two humans ff the first
one is greater than twice as rich as the second.

RHET -> (Rassert
; first define the wealth of various agents
[Wealth Jake 3]
[Wealth John 5]
[Wealth Jason 10]
; the definition of P: find the wealth of the first, make sure the variable is bound,
; and then multiply it by two using SetValue. Now the comparison can be made.
[[P ?x ?y] < [Wealth ?x ?wl*T-Number] [Bound ?wl]

[SetValue ?w*T-Number (* 2 ?wl)]
[Wealth ?y ?w2*T-Integer] [> ?w2 ?w]])

([[SBMB [P ?X ?Y]] < [WEALTH ?X ?WI*T-NUMBER ] [BOUND ?WI*T-NUMBER]
[SETVALUE ?W*T-NUMBER (*2 ?WI*T-NUMBER)]
[WEALTH ?Y ?W2*T-INTEGER] [> ?W2*T-lNTEGER ?W*T-NUMBER]]

[WEALTH JASON 10 <] [WEALTH JOHN 5 <] [WEALTHJAKE 3 <])
RHET -> (Trace-B-Axiom [P &rest ?x])

([[SBMB [P ?X ?Y]] < [WEALTH ?X ?WI*T-NUMBER ] [BOUND ?WI*T-NUMBER]
[SETVALUE ?W*T-NUMBER (* 2 ?WI*T-NUMBER)]

[WEALTH ?Y ?W2*T-INTEGER ] [> ?W2*T-INTEGER ?W*T-NUMBER ])
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RHET -> (Prove [P Jake John])
Matched and Interpreting Axiom [[SBMB [P ?X->JAKE ?Y->JOHN]] <

[WEALTH ?X->JAKE ?WI*T-NUMBER]I [BOUND ?Wl*T-NUMBER]I
[SETVALUE ?W*T.NUMBER (*2 ?W1*T-NUMBER )I
(WEALTH ?Y->JOHN ?W2*T-INTGER]I[>?W2*T-INTEGER ?W*T-NUMBER II

Aj--jm Fails ([[SBMB (P ?X->JAKE ?Y->JOHN]I < [WEALTH ?X->JAKE ?WI*T-NUMBER I
[BOUND ?Wl*T-NUMBER I [SETYALUE ?W*T-NUM]BER (* 2?WlOT-NUMBER)]
[WEALTH ?Y->JOHN ?W2*T-INTGER]j [>?W2*T-RnMhER ?W*T-NUMBER fl)

:UNKNOWN
RHET -> (Prove [P Jake Jason])

Matched and Interpreting Axiom [[SBMB [P ?X->JAKE ?Y->JASON]] <

[WEALTH ?X->JAKE ?W1*T-NUTMBER I [BOUND ?WI*T.NUMBER I
[SETVALUE ?W*T-NIJMBER (*2 ?WI*T-NUMBER)]
[WEALTH ?Y->JASON ?W2*T-INTGER I[> ?W2*T.INTGER ?W*T-NUMBER II

Axiom Succeeds ([[SBMB [P ?X->JAKE ?Y->JASONjc [ WEALTH ?X->JAKE ?Wl->3]
[BOUND ?W1->31 [SETVALJE ?W->6 (* 2 ?Wl->3)] [WEALTH ?Y->JASON ?W2->lO]
[> ?W2->1O ?W->611): NIL

[P JAKE JASON]
Consider using Genvalue to find the smallest power of two greater than some given number

(assuming the number is less that 2 to the 8th). We can do this using Genvalue:
RHET -> (Rassert [[SmallestPower ?p*T-Number ?n*T-numberI < [GenValue ?p

(FirstEigbtPowers)] [> ?p ?n]])
([[SBMEB [SMALLESTPOWER ?P*T-NUMBER ?N*T-NUMBER 11 <

[GENVALUE ?P*T-NUMBER (FIRSTEIGHTPOWERS)]
[>?P*T-NUMBER ?N*T-NUM[BER ]

RHET -> (Defun FirstEightPowers 0)
(mapcar '(Lambda (x) (Exp 2 x)) '(1 2 3 4 5 6 7 8)))

FIRSTEIGHTPOWERS
RHET -> (Trace-B-Axiom [SmallestPower &rest ?x])

([[SBMB [SMALLESTPOWER ?P*T-NUMBER ?N*T-NUMBER] <
[GEN VALUE ?P*T-NUMBER (FIRSTEIGHTPOWERS)]
[>?P*T-NUMBER ?N*T-NUMBER 11

[[SBMB [P ?X ?Y]] < [WEALTH ?X ?W 1*T-NUMBER
[BOUND ?Wl*T-NUMBER ]
[SETVALUE ?W*T-NUMBER (*2 ?Wl*T-NUMBER)]
[WEALTH ?Y ?W2*T.InTEGER I [> ?W2*T-RlNTEGER ?W*T-NUMBERII)

RIHET -> (Prove [SmallestPower ?p*T-Number 5 1])
Matched and Interpreting Axiom [SBMB [SMALLESTPOWER ?P*T.NUMBER ?N->5 1)] <

(GENVALUE ?P*T-NUMBER (FIRSTEIGHTPOWERS)] [>?P*T-NUYMBER ?N->51I])
Axiom Succeeds ([[SBMB [SMALLESTPOWER ?P->64 ?N->51]I <

(GENVALUE ?P->64 (FIRSTEIGHTPOWERS)J [> ?P->64 ?N->5 ll]):NiL
[SMALLESTPOWER ?P->64 51]
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Here's a variant that returns the power rather than the number, which demonstrates returning
multiple values:

RHET -> (Rassert [[SmallestExponent ?exp*T-Number ?n*T-number] <
[GenValue (?v*T-Number ?exp) (FrstEightPowersAndExp)] [> ?v ?n]])

([[SBMB [SMALLESTEXPONENT ?EXP*T-NUMBER ?N*T-NUMBER ]] <

[GEN VALUE (?V*T-NUMBER ?EXP*T-NUMBER)
(FIRSTEIGHTPOWERSANDEXP)I [> ?V*T-NUM[BER ?N*T-NUMB3ER ]I)

RHET -> (Defun FirstEightPowersAndExp 0)
(values (mapcar '(Lambda (x) (Exp 2 x)) '(12 2345 6 7 8))) '(1 2 3 4 5 67 8)))

FIRSTEIGHTPOWERSANDEXP
Let's trace a Lisp function

RHET -> (Trace FirstEightPowersAndExp)
(FIRSTEIGHTPOWERSANDEXP)

RHET -> (Trace-B-Axiom [SmallestExponent &rest ?x)
([[SBMB [SMALLESTEXPONENT ?EXP*T-NUMIBER ?N*T-NUMEBER 1<

[GENVALUE (?V*T-NUMEBER ?EXP*T-NUMBER)
(FIRSTEIGHTPOWERSANDEXP)]

[>?V*T-NUMEBER ?N*T-NUMBER II
[[SBMB [SMALLESTPOWER ?P*T-NUMBER ?N*T-NUMBER]1] <

[GENVALUE ?P*T-NUMBER (FIRSTEIGHTPOWERS)]
[>?P*T-NUMBER ?N*T-NUMBER ]]

[[SBMB [P ?X ?Y]] < [WEALTH ?X ?W1I*T-NUMIBER ] [BOUND ?W1I*T-NUMBER]
[SETVALUE ?W*T-NUMBER (* 2 ?W1l*T-NUMBER)]
[WEALTH ?Y ?W2*T-INTEGER ) [> ?W2*TRiNTEGER ?W*T-NUMBER])

RHET -> (Prove [SmallestExponent ?p*T-Number 5 1])
Matched and Interpreting Axiom [[SBMIB [SMALLESTEXPONENT ?EXP*T-NUMBER ?N->51]

< [GENVALUE (?V*T.NUTMBER ?EXP*T-NUJMBER )
(FIRSTEIGHTPOWERSANTDEXP)J [>?V*T-NUJMBER ?N->511I]

0: (FIRSTEIGHTPOWERSANDEXP)
0: returned (2 4 8 16 3264 128 256) (12 23 45 678)
Axiom Succeeds ([[SBMB [SMALLESTEXPONENT ?EXP->6 ?N->5111 <

[GENVALUE (?V->64 ?EXP.>6) (FIRSTEIGHTPOWERSANDEXP)]
[>?V->64 ?N->5 1]]) : NIL-

[SMALLESTEXPONENT ?P->6 51]
;Consider an example of a Lisp function that manipulates RHET variables. Say we want to
;define a predicate PlusOne that is true if the first argument is one less than the second argument.
;The predicate fails if both arguments are unbound, but otherwise binds any remaining variables
;appropriately. This would be defined as follows:
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RHET ->(defun plusonefunction (&rest x)
(cond ((eqi (length x) 2)

(let ((arg I (car x))
(arg2 (cadr x)))

(cond
;If arglI is an integer variable, and arg2 is a number

((and (rvariable-p argi)
(type-compatiblep 'T-Integer (Type-Object arg 1))
(numberp arg2))

(unify arg I (- arg2 1)))
;If arg2 is an integer variable, and arg I is a number

((and (rvariable-p arg2)
(type-compatiblep T-Integer (Type-Object arg2))
(numberp arg 1))

(Unify arg2 (+ 1 argi)))
;If both are numbers

((and (numberp argi) (numberp arg2))
(eqi (+ 1 argi) arg2)))))))

PLUSONEFUNCTION
Then define a predicate that uses a call to this function

RHET -> (Rassert [[plusone ?x*t-number ?y*t-number] <
[call (plusonefunction ?x ?y)]])

([[SBMEB [PLUSONE ?X*T-NUMBER ?Y*T-NUMBER 1<
[CALL (PLUSONEFUNCTION ?X*T-NUNMER ?Y*T-NUMEBER )]])

testing the function - let's trace the Lisp function PlusOneFunction

RHET -> (Trace PlusOnefunction)

(PLUSONEFUNCTION)
RHET -> (Prove [PlusOne 1 2])

0: (PLUSONEFUNCTION 12)
0-retumed T

[PLUSONE 1 2]
RHET -> (Prove [PlusOne 1 ?x*T-NumberI)

0: (PLUSONEFUNCTION 1 ?Y*T-NUMBER)
0: returned 2 ('?Y" 2)

[PLUSONE 1 ?X->2]
RHET -> (Untrace)

NIL
RHET -> (Prove [PlusOne ?x*T-Integer 41'

[PLUSONE ?X->3 4]
RHET -> (Prove [PlusOne I ?x*T-UI) ;Ail due to type incompatibility

:UNKNOWN
RHET -> (Prove [PlusOne ?x*T-Number ?y*T-Number])

:UNKNOWN
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Relation Abbrev. Inverse

Before(ij) <>

Meets(ij) m mi

Overlaps(ij) o oi 4-p -

Starts(ij) s si , -

During(ij) d di - 1

Finishes(ij) f fi -d-

Figure 6: The different interval relationships

6. RHET.6: RHET and Temporal Reasoning

6.1 Basic Concepts

RHET supports temporal reasoning using the TIMELOGIC [Koomen 1988,1989] system as a
specialized reasoner. TIMELOGIC implements a version of Allen's interval logic. It allows the
user to define constraints between temporal intervals and uses constraint propagation to compute
the consequences. As such, TIMELOGIC conceptually integrates with RHET's forward chaining
facility. It also supports reference hierarchies, and can automatically generate reference intervals to
optimize the network. The interface between TIMELOGIC and RHET supports backtracking over
temporal predicates and also supports user contexts as defined in RHET.8.

Allen's Interval Logic takes the temporal interval as primitive and defines 13 possible
relations that can hold between intervals. Figure 6 shows six relations and their inverses. Equality
is the thirteenth relation. Further details on interval reasoning can be found in Allen [1983]. RHET
also provides a limited facility for reasoning about the durations of intervals and about recurrent
events. For details, see the reference manual and Koomen [1989].

6.2 Basic Syntax

The principal predicate that forms the interface between RHET and Tempos can be used to add
temporal information as well as to retrieve information as needed in proofs. The predicate

[Time-Rein Time] Rein Time2]

-47-



:A after :B before
:C properly contains :D properly during
:F finishes :Fi finished by
:M meets :Mi met by
:0 overlaps :Oi overlapped by
:S starts :Si started by
:E equals

Figure 7: The keywords for the temporal relations

is true if and only if the relationship between the two time intervals is the specified relation. The
relation may be an atom indicating a single temporal relation, or a list indicating a disjunction of
temporal relations. The interval relations are specified the keywords shown in figure 7.

For example, the property [TimeReln T1 :B T2] is true only if time interval TI is before
time interval T2, and [TimeReln T1 (:B :A) T2] is true only if TI is either before T2 or after T1
(but they do not "overlap" in any way). If [TI] meets [T2], then [Time-Rein TI (:M :B) T2] will be
true since (:M) is a subset of (:M :B).

Often is is useful to check whether a certain relationship between two intervals is possible.
Intuitively, we want to check is a certain relationship is one of the remaining possibilities. While
we could implement this using the existing RHET functions, this is a common enough operation to
warrant its own predicate. The predicate

[Time-Reln-P Time] Rein Time2]

is true if and only if the specified relation is a subset (or equal) to the actual list of possible
relationships between the two times. Thus if we had asserted that Ti is before, after or meets 72
(i.e. we added [Time-Rein T1 (:A :B :M) T2]), then [Time-Reln-P T1 :M t2] would be true, as
would [Time-Reln-P TI (:A :M) T2]. For convenience, RHET provides a set of temporal
predicates corresponding to the common uses of the Time-Rein predicate. These are shown in
figure 8.

6.3 Using RHET.6
To use the temporal reasoner, terms must be declared to be of type :T-Time. This may be done
using the standard RHET mechanisms, e.g.

(Add-Itype 'T-Time [T1] [T2])

or by using a special function that allows one to define a reference interval for a set of intervals.

(Define-Time Term1 ... Termn &key Reference-Time-Term)
This defines the specified terms to be time intervals. If the optional reference interval is
specified, then this will be the reference interval for the terms (see [Koomen, 1989] or
[Allen, 1983] for more information on reference intervals). For example,

(Define-Time [TI] [T2] [T3])
defines three time intervals in TEMPOS that correspond to three RHET objects
automatically declared to be of type T-TIME.
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Predicate Definition
[Time-After TI 12] (Time-Reln TI :A "21
[Time-Before TI T21 Time-Ren TI :B 121

Time-Contains TI 21 [Time-ReIn TI :C T21

Time-During TI 12] [Time-Rein Ti :D T2]

[Time-Euals Ti T2] .Time-Rein TI :E T21

Time-Finishes TI 12] [Time-Rein TI :F T2]

Time-Meets T1 T2 [Time-Rein TI :M T2]

Time-Ovedaps TI T2] [Time-Rein TI :0 T21

Time-Starts TI T2] Time-ReIn TI :S T2]

Time-Within TI T2] [Time-Rein TI (:D :E :F :S) T2]

Time-Within! Ti T21 [Time-Rein TI (:D :F :S) 12]

[lime-Disjoint TI T2] [Time-Reln TI (:A :B :M :Mi) T21

[Time-Disjoint! TI1 T2 [Time-Rein TI (:A :B) 12]

Time-Intersects TI T21 [Time-Rein TI :C :D :E :F :Fi :0 :Oi :S :Si) T21

Time-Starts-Later T1 72] [Time-Rein TI (:A :D :F :Mi :Oi) T2]
Time-Starts-Earlier TI 2 FTime-Rein TI (:B :C :Fi :M :0) 2]

[Time-Finishes-Later TI 721 [Time-Rein TI (:A :C :Mi :Oi :Si) T2]

[Time-Finishes-Earlier TI T12] [Time-ReIn TI (:B :D :M :O :S) T2]

Figure 8: Some temporal predicates defined in terms of Time-Rein

Once intervals are defined, information about them can be added using the Time-Rein
predicate defined in the previous section.

Time constants can be created dynamically during proofs using the following predicate:

[Time-Skolem Variable &optional Reference-Time]
If the variable is bound, then this predicate fails. Otherwise, it creates a new time constant
and binds the constant to the variable. If a reference-time is given, it must be already
defined as an interval.

Queries and assertions to Tempos can be traced using the following functions.

(Trace-Tempos &Optional Verbose-P)

Turns on tracing of all TEMPOS queries and assertions. If Verbose-P is non nil, a more
detailed trace is given.

(Untrace-Tempos)
Stops tracing Tempos queries and assertions.

Finally, the following function resets the Tempos database:

(Reset-Tempos)
This initializes RHET and the Tempos database.
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6.4 Examples

Here are some forward chaining axioms that define the effects of actions in the blocks world.
RHET -> (Rassert

If a block ?a is stacked on block ?b at time ?tl, then ?a is on ?b for sr--,e time
?2 that immediately follows ?tl.

[[And [On ?a ?b ?t2] [Time-Rein ?tl :M ?t2]] <
[Bound ?tl] [Time-Skolem ?t2] :forward [StackEvent ?a ?b ?tl])

A block cannot be clear and have another block on it at the =r,, time
[[Time-Reln ?tl (:A :B) ?t2] <

[Clear ?b ?t2] [On ?a ?b ?tl] [Bound ?tl] [Bound ?t2]
:forward [Clear ?b ?t2] [On ?a ?b ?tl]])

(([[TIME-RELN ?Tl (:A :B) ?T2] < [CLEAR ?B ?T2] [ON ?A ?B ?TlI [BOUND Tl]
[BOUND ?T2] :forward [ON ?A ?B ?Tl]]

[[TIME-RELN ?Tl (:A :B) T2] < [CLEAR ?B ?T2] [ON ?A ?B ?Tl] [BOUND ?TI]
[BOUND ?T2] :forward [CLEAR ?B T2]])

([[AND [ON ?A ?B ?T2] [TIME-RELN ?Tl :M ?T2]] < [BOUND ?Tl] [TIME-SKOLEM
?T2] :forward [STACKEVENT ?A ?B ?Tl]]))

Now let's define some times in a sequence
RHET -> (Define-Time [Ti] [T2] [T3])

([TI] [T2] [T3])
RHET -> (Rassert [Time-Rein TI :M T2] [Time-Rein T2 :M T3])

(NIL NIL)
If we add that that stack B I on B2 occurred at time T3

RHET -> (Rassert [StackEvent BI B2 T3])

([STACKEVENT B I B2 T3 <])
then we can prove that B I is on B2 is true over a time that is met by T3

RHET -> (Prove [And [On B I B2 ?t] [Time-Reln T3 :M ?t]]))

[AND [ON BI B2 ?T->Time-Skolem-0001]
[TIME-RELN T3 :M ?T->Time-Skolem-000 1]]

B I is on B2 also after T2

RHET -> (Prove [And [On B 1 B2 ?t] [Time-Reln ?t :A T21]))

[AND [ON BI B2 ?T->Time-Skolem-0001]
[TIME-RELN ?T->Time-Skolem-0001 :A T2]]

let's add that B2 is clear over a time T5 that is met-by or before TI

RHET -> (define-Time [T5])

([T5])

RHET -> (Rassert [Time-Rein TI (:M :B) T5])

(NIL)

RHET -> (Rassert [Clear B2 T51)
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([CLEAR B2 T5 <])
what is the relationship between T5 and T2?

RHET -> (prove [Time-Rein T5 ?x*T-lisp 12])
[TIME-RELN T5 ?X->(:A :D :E :F :MI :01: :SI) T2]

;could T5 be equal to T2 (i.e. could B2 be clear at 72)? yes?
RHET -> (prove [Time-Ren-P T2 :E T5])

[TIME-RELN-P 12 :E T5]
;could T5 be equal to any time where B I is on B2? no
RHET -> (prove [And [On B I B2 ?t*T-Time] [Time-Reln-P ?t :E T5])

NIL

RHET.7: RHET as a Frame-based System

7.1 Basic Concepts
Using the tools defined so far, the user could define a frame-like representation system (e.g.
[Bobrow and Winograd 1977] [Brachman, Fikes and Levesque, 1983]). This is already done,
however, and is provided with the basic system. RHET.7 involves these extensions. The principle
concept is that of a structured type. Structured types are like ordinary types except that they carry
additional information relevant to each instance of the type. These include such frame-like notions
as slots, constraints, and relevant properties.

Slots are simply distinguished function names defined on the type. Thus, saying that the
type T-ACTION has an AGENT slot that is filled by a T-HUMAN in a frame system is equivalent
to saying that there is a function f-agen" that maps actions to humans as would be defined by

(Define-Fn-Type 'F-Agent '(T-Human T-Action)).

The notion of filling a slot of an instance Al of type action with an object JOHN is simply
adding the equality [F-Agent Al] = [John].

RHET also distinguishes between types whose instances are fully determined from their
role values, the functional types, from those that are not. If T is a functional type with role
functions rl, ..., n, then any two instances il and i2 of T such that [f-ri il]=[f-rl i2], ..., [f-rn
il]=[f-m i2] are themselves equal. For example, we might define an action as taking three roles: an
agent, a time, and an event (the action consists of the agent causing the event at the specified time).
The action type is functional on these three roles - any two actions with the same agent, time and
event are the same action.

Types may also have other information associated with them. You can identify properties
that must hold of any instance of a given type. These come in two versions: the initializations are
RHET facts that are asserted whenever an instance is created. The constraints are RHET forms that
must be provably true for any instance. Constraints and initializations may involve a special
variable called ?self, which is bound to the new instance to be created. When an instance i is
created of type T, the variable ?self is bound to i, the initializations are added and the constraints
are proved. If adding the initializations causes an inconsistency, or a constraint is not true, then the
whole operation fails.
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RHET also allows the user to define arbitrary classes of relations associated with a type.
RHET performs no operations automatically on these relations, but provides tools so the user can
define whatever operations they desire. For example, the type :T-action might have relation classes
corresponding to the preconditions and effects as used in STRIPS-like planning systems.

Since types may overlap in RHET, an object can be an instance of several structured types
at once. In this case, the object must satisfy all the constraints simultaneously. In addition,
structured types can be defined as the conjunction of two other structured types. In this case, the
new type inherits all the properties of its supertypes. RHET provides a facility to equate role names
across different types (i.e. the agent role of type ACTION is the same as the speaker role of type
SPEECHACT).

7.2 Basic Syntax

A structured type is implemented by defining two classes of functions that operate on instances of
the type. The first are the role functions as described above, and the second, for functional types,
is the constructor function.

As an example, consider a type T-Action, that has three roles, an agent of type :T-Human,
a time of type :T-Time, and an occurrence of type :T-EVENT. This is represented in RHET using
three role functions:

f-agent: from :T-Action to :T-Human
f-time: from :T-Action to :T-Time
f-occurrence: from :T-Action to :T-Event.

If :T-Action is a functional type, it also has a constructor function defined as follows:

c-action: from :T-Human, :T-Event , and :T-Time to :T-Action.

RHET uses an axiom that a constructor function applied to its respective role functions of an
instance yields the instance itself, i.e. for any x

[c-action [f-agent x] [f-event x] [f-time x]] = x.

This one axiom yields the required properties for functional types, and RHET adds such an
axiom for every instance of the type when it is defined. To see that it works, consider any two
instances il and i2 with equal role values:

il = [c-action [f-agent iI] If-event il] If-time iI]] =
[c-action [f-agent i2] [f-event i2] [f-time i2]] = i2.

Thus given an instance II of type T-Action, the appropriate role values can be obtained
simply by using the appropriate role function. Say we wanted to assert that the agent role of I1 is
[John], and the time role of I1 and 12 are the same, whatever they are. We could add the equalities
directly:

(Add-eq [f-agent III [John])
(Add-eq [f-time II] [f-time 12]).

Alternately, role values can be defined using the RHET builtin predicate

[Add-Role Instance &Rest <Role-Name Value>*]

which in the above example would be [Add-Role 11 R-Agent John R-time [f-time 12]]. This is
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equivalent to simply adding the appropriate equality assertion, but is useful in cases where the role
name is not known at the time the code is written and is derived during the proof.

RHET also provides a more general facility for making queries about role values. It
provides the predicate

[Role Instance RoleName Value]

which is true only if the Instance has the indicated role value. Thus [Role I1 R-agent John] will be
true given the above assertions. The rolenames in the predicate are of type T-Atom, and are
automatically defined by RHET when the roles are defined for the types. Role names correspond to
the function names but begin with an "r-" prefix instead of the 'f-" prefix. This predicate can be
used in proofs to find the value of a role (e.g. [Role I1 r-agent ?v]), or finding objects that have
certain role values (e.g. [Role ?o r-agent John]). It cannot presently be used to find the rolename
relating two objects, although this will be supported in a later version of RHET. More complex
queries involving two variables are supported and RHET will iterate through all the possible values
as the proof backtracks. This predicate cannot be asserted, but a predicate Add-Role is available as
described above.

The type system is assumed to be constant during any given proof, so the facility for
defining structured types is primarily available through the Lisp interface as described in the next
section.

RHET also provides predicates to allow information about structured types to be queried.
The predicate Subtype? as described in section 3 allows the users to query subtype relationships,
and the following allows for queries about roles:

[Role? RoleName TypeDescriptor]
Succeeds only if the specified type descriptor has (explicitly defined or inherited) the
specified role. Either argument can be a variable and used to retrieve information about
roles that a type has or about types that have a certain role.

7.3 Structured Types and Instances
The principal function for defining structured types is Define-Subtype as shown below. It
allows the user to define new roles for the type (in addition to the roles the type inherits from its
supertype), new constraints, initializations and relations.

(Define-Subtype Type Supertype &Key (Roles (Rolename Type)*))
Define-Subtype defines the specified type as a subtype of the specified supertype. It thus
inherits all the roles, constraints, initializations and relations of the supertype. The roles
specified may be new roles, or redefinitions of inherited roles to have a more restrictive
type. For example,
(Define-Subtype 'T-Event 'T-U :roles '((r-time T-Time)))
would define a type T-Event and a function f-time that defines a time for each event.
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(Define-Functional-Subtype Type Supertype &Key (Roles (Rolename Type)*))
Define-Functional-Subtype defines a subtype just like Define-subtype except that the new
type is functional on its defined roles (see section 7.2). For example, (Define-Functional-
Subtype 'T-action 'T-event :roles '((r-agent T-Human) (r-occurrence T-event))) defines a
new type T-action that is functional on its roles r-agent, r-occurrence and r-time (inherited
from T-event). In other words, for any instance iI of T-action, il=[c-action [f-agent i1] [f-
occurrence iI] [f-time iI]].

More complex inheritance hierarchies can be created by defining types to be the conjunction
of two other types. In this case, the subtype inherits all the properties from both types, including
any equality assertions if one or both of the supertypes are functional.

(Define-Conjunction New-Type (Existing-Type*) &Key :Roles
((New-Role-Name Existing-Role-Name*)*))
This defines the new type to be a conjunction of the list of specified existing types. It also
allows new role names to be defined that are equal to other role names in the existing types.
For instance, if :T-Pet is a type with roles R-petname and R-animaltype, and :T-Canine is a
type with role R-breed, then we might define pet-dogs as follows

(Define-Conjunction 'T-PetDog '(T-Pet T-Canine) :roles
'((R-name R-petname) (R-Dogbreed R-breed R-animaltype)).

An instance D1 of type :T-PetDog now inherits the properties of both :T-Pet and
:T-Canine. Furthermore, we know that [f-name D I ]=[f-petname D I] and
[f-Dogbreed D1 ]=[f-breed D I]=[f-animaltype Dl].

(Rep-Structures)
This function returns a list of all the structured types that are defined.

Instances of structured types are defined using the functions in this section.The principle
function is

(Define-Instance Instance Type &Rest <Rolename value>*)
Define-Instance defines an instance of a particular type, optionally specifying role values
for the object. For example, (Define-Instance [El] T-event 'R-time [T1]) would define an
object [Eli that is an instance of the type T-event and [f-time Eli=Tl.

For example, given the definition of T-Action above, we might define a new subtype where
the event caused must be a Moving-Event, and involves an object. This could be defined as
follows:

(Define-Subtype 'T-Moving-Action T-Action
:roles '((R-occurrence T-Mnving-Event) (R-object T-Phys-Obj))

The entire set of roles for the type T-Moving-Action are now:

(R-agent T-Human) - inherited from T-Action
(R-occurrence T-Moving-Event) - inherited but newly type restricted
(R-Time T-Time) - inherited from T-Action (and hence from T-Event)
(R-Object T-U) - new role

In addition, since T-action is a functional subtype, we know that any instance of T-
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Type of Object Returned multiple values
Constant :CONSTANT <type> (<role> <value>)*
Rolename :ROLE-NAME <list of types using this role>
Function name :FUNCTION-NAME <type restrictions on args> <type of result>
Type :TYPE-NAME <list of immediate supertypes>

<list of roles defined>
<list of role type restrictions>
<constraints list>
<constraints list>
<constraints list>
<constraints list>
<list of initializations>
((<relation-name <relation-form>*)*)

Relation :RELATION-NAME <list of types using the relation>
Free variable :VARIABLE <type restriction>
Function w/unbound vars :FUNCTION <type> (<role> <value>)* <<check???>>
Anything else :UNKNOWN

Figure 9 The return values of Retrieve-Def
Moving-Action is also an instance of T-Action and thus is functional on its roles r-agent, r-

occurrence and r-time. For example, if M1 is an instance of T-Moving-Action, then

[EQ? [c-action [f-agent MI] [f-occurrence M1] [f-time MI]] M1].

A consequence of this is that we could NOT have two Moving-Actions that had identical r-
agent, r-event and r-time but different r-objects! If this were possible, then T-Action could not
have been a functional type.

Role values for existing objects may be defined using the Role predicate, or by adding an
equality using the role function to identify the role being defined.

(Retrieve-Def Object)
This function returns a description of the specified object, whether it be a type-name,
rolename, function name, relation, variable, or constant. The function returns multiple
values, the form of which depends on the type of the object and is specified fully in figure
9. For RI-IET constants, this function returns the constant's type and any role values that
are defined. Continuing the example in this section, the call (Retrieve-Def [El]) would
return the values :CONSTANT,T-Event, and (R-Time [Tl]). Calling this function with a
type name will return all the information about the structured type shown in figure 9. Note
that RHET distinguishes four types of constraints and these are listed separately. The
typical user can ignore these distinctions. See the reference manual for more details.

If you are introducing objects by means of their constructor functions rather than using
Define-Instance, then the information about the role values does not become available until
RHET expands the constructor function. RIET does this automatically when the constructor
function is involved in an equality assertion, but the user can force expansion earlier than that using
the built-in predicate:
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[Expand-Constructor Constructor-Function]
This expands the constructor function, i.e., it adds the equalities that define all the role
values. For example, given the definition of T-Action above,

[Expand-Constructor [C-Action John El Ti]]
would create a new constant (say AI) and add the equalities

[f-Agent A I ]=[John]
[f-occurrence Al]=[El]
[f-Time Al]=[T1].

7.4 Constraints, Initializations and Relations
As mentioned above, RHET allows more information to be stored about each type besides the role
functions. The constraints are properties that must be provably true of an object once it is defined.
If a constraint is not true, RHET will add it unless it creates an inconsistency, in which case the
instance is not defined. The initializations of a type allow for procedural manipulation whenever an
object is defined. Finally, types may have arbitrary relations associated with them that are
uninterpreted by RHET and can be used for whatever purpose the user wishes. All three of these
constructs use a special variable ?self, which is bound to the instance being defined before any
constraint, initialization or relation is created.

The functions Define-Subtype and Define-Functional-Subtype take optional
arguments to specify the initializations, constraints and relations. Thus the full form of Define-
Subtype is

(Define-Subtype Type Supertype &Key (Roles (Rolename Type*)) (Relations (Relation-name
Relation-Forms*)*) Constraints Initializations)

Constraints

Constraints are predications that must be true of any instance of the specified type. They can be
used to relate role values and for adding any other general knowledge about the instances of the
type. In particular, constraints are very useful for capturing equalities between roles, which cannot
be stated in general terms since RHET cannot handle equality assertions over non-ground terms.
The constraint mechanism allows RHET to add a fully ground equality for each instance as it is
defined.

For example, lets us assume that we have a subclass of T-MAN called T-HAPPYMAN,
such that each instance of T-HAPPYMAN is known to be happy. In this case, we might have
added [Happy ?x*T-HAPPYHUMAN] to the database, but lets see how it also could be realized as
a constraint. We would define the type T-HAPPYMAN as follows:

(Define-Subtype 'T-HAPPYMAN T-MAN
:constraints '([Happy ?self]))

Given this, if we now defined an instance

(Define-Instance [HI) T*HAPPYMAN)

then [Happy HI] would be added to the database. This technique would be preferable over simply
asserting [Happy ?x*T-HAPPYMAN] in the following types of situations:

For technical reasons, say that Happy is a builtin, the assertion [Happy ?x]
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cannot be directly added to the database. In this case, we get around the
problem by adding it for each instance as they are defined.

If we had forward chaining rules triggered by [Happy ?x], then using the
constraint mechanism would trigger forward chaining whenever an instance
was defined.

If in adding the constraints an inconsistency was detected then the instance cannot be
created and the Define-Instance operation fails. You may use constraints that are not assertable to
the database. In this case, RHET tries to prove that the constraint already holds in the database. If it
does, then the instance can be created, otherwise the Define-Instance operation will fail.

Initializations

Occasionally, we simply want to run a RHET program whenever an instance of a type is defined.
This might be to do some initialization required to create the instance and satisfy the constraints, or
to print trace messages, or to do anything else that might be desired. In many cases, one could use
constraints or initializations to do the same thing, but there is a significant difference in intent.
Constraints are declarative in nature, and indicate things that must be true when the instance has
been created. Initializations are generally procedural in nature, and generally are not predicates that
will be true after the instance has been created.

For instance, we could print a message whenever an instance is created, or retract some
fact, or conditionally add some facts. Here is an example where a message is printed out and we
retract the fact that the object being defined is Sad (if it is provably sad before the instance is
defined):

(Define-Subtype 'T-HAPPYMAN T-MAN
:iitializations '([And [Cond ([Sad ?self] [Retract [Sad ?self]])]

[Rprint "Creating instance of" ?self]])
:constraints '([Happy ?self]))

Relations

The relations facility provides the user with a capability of storing arbitrary information with the
type definitions. For example, a STRIPS-style planner might be implemented in RHET by defining
the relations preconditions, adds and deletes to the T-ACTION type. Relations are Defined to
RHET with the following function.

(Define-Rep-Relation Relation-Keyword &Key Inherit-type)
This defines the indicated relation keywords so that they are now available to use in
defining new subtypes. The inherit type indicates whether the relation is to be inherited to
all subtypes of types that have this relation (:inherit), or not (:local). The default value is
:inherit. For example,

(define-Rep-Relation :precondition)
defines a relation keyword :precondition that is inherited to all subtypes of any type that has
this relation defined.
Once a relation is defined, it may be used in type definitions. For example, here is a
definition of a stacking action (T-STACK) as a subtype of the type T-ACTION.
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(Define-subtype T-STACK T-ACTION
:roles '((R-blockl T-BLOCK) (R-block2 T-BLOCK))
.relations '((:precondition [Clear [f-blockl ?self]] [Clear [f-block2 ?self]])

(:effects [On [f-blockl ?self] [f-block2 ?selfJ])))
To retrieve the relations defined for a particular type, the following function is provided.

(Get-relations Relation-Keyword Type)
This returns the list of relations associated with the specified keyword for the specified
type. The type may be specified as a lisp symbol, or be an actual type structure built using
the Make-I-Type function.

Since relations are uninterpreted by RHET, they must be controlled by the user. For techniques for
defining ways to manipulate relations, see the reference manual. RHET does provide a few basic
predicates for manipulating relations that are useful in most common applications. The following
predicates allow the user to access the various relations defined for a type.

[Relation-List List Relation-Keyword Type]
This succeeds ff the specified list is the relation list of the specified type. This can be used
to retrieve the relations of a type if the specified list is a variable. Variables are not allowed
over the relation-keyword or the type. As an example,

[Relation-list ?x*T-list :precondition :T-Stack]
would bind ?x to the list ([Clear [f-blockl ?self] [Clear [f-block2 ?self]]) with the
definitions above.

[Relation-Form? Form Relation-Keyword Type]
This succeeds if the indicated form is an element of the indicated relation list of the
specified type. If the form is a variable, this predicate will successively bind it to each form
in the list on backtracking. For example,

[Relation-Form? ?x :precondition :T-Stack]
will succeed and bind ?x to [Clear [f-block I ?self] on the first call with the definitions
above.

A relation retrieved from a type will contain the variable ?self. To bind this variable to a particular
instance, the following builtin predicate is defined:

[Bind-Self-to-Instance Form Instance]
This binds all ?self terms in ?form to ?instance. You can then do an assert-axiom (or fact)
on ?form. For example, the following code would add all of the :effects relations for a
particular action [Al) to the database:

(Rassert [[Add-Action-Effects ?x*T-Action] <
[Type? ?x ?type*T-anything]
[Forall ?form [Relation-Form? ?form :effects ?type]

[Bind-Self-To-Instance ?form ?x]
[Assert-Fact ?form]]])

(prove [Add-Action-Effects A l])
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7.5 Examples

;Some initial type hierarchy and instances for the examples
(Tsubtype 'T-U 'T-Animal 'T-Phys-Obj)

(NIL NIL)
(Tsubtype T-Animal T-Human)

(NIL)
(Add-Itype T-Human [John] [Jack] [Jill])

([JOHN [JACK] [JILL])
(Add-Itype 'T-Phys-Obj [Box I] [Box2])

([BOXI] [BOX2])
(Define-Time [TI] MT])

([Ti [12])
Now let's define some structured types

(Define-Subtype T-Event T-U :roles '((r-time T-Time))
#<Frame T-EVENT :Roles R-TIME*T-TIM1E>

(Define-Subtype T-Moving-Event 'T-Event
:roles '((r-object T-Phys-Obj)))

#<Frame T-MOVING-EVENT :Roles R-TIME*T-TIME R-OBJECT*T-PHYS-OBJ>
;Let's define an instance of T-Moving-Event
;with one role specified

(Define-Instance [El] Tr-Moving-Event 'R-time Ti)

[Ell
(Retrieve-Def [El])

:CONSTANT
T-MO VING-E VENT
(R-TIME [I] R-OBJECT [F-OBJECT EI])

Let's define the second role
(Rassert [EQ? [f-object ElI] [Box 1]

(Define-Functional-Subtype 'T-action 'T-event
:roles '((r-agent T-Human) (R-occurrence T-event)))

#<Frame T-ACTION :Roles R-TIMEf*T-TlM1E R-AGENT*T-HUMAN
R-OCCURRENCE*T-E VENT
:Functional-Super-Type(s) (T-ACTION)>

Since this is functional, if all three roles were identical, then the instances would be identical
(Define-Instance [Al] 'T-Action 'R-Agent [Jack] 'R-time [TI])

[All
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(Define-Instance [A2] Tr-Action 'R-Agent [John] 'R-time [Ti] 'R-occurrence [Ell)
[A2]

(Retrieve-def [A1]
:CONSTANT
T-ACTION
(R-TIE [TI] R-AGENT [JACK] R-OCCURRENCE [F-OCCURRENCE Al1])

(prove [Eq? Al A2])
NI1L

;Now if we add enough information to make the roles equal
RHET ->(add-role [Al] 'R-occurrence [El]1)

[Al]
RHET ->(add-eq [John] [Jack])

:EQ
then the two actions are the same

RHET ->(prove [Eq? AlI A2])
[EQ? A2A21

Here's an example defining relations and later instantiating them

RHET -> (Define-rep-relation :effect)
#<TERM-SUPPORT:REP-RELATIONS @ #x133b71e>

RHET -> (Define-Subtype T-NewAct 'T-U :relations '((:effect [P ?self] [Q ?self]l)))
#<Frame T-NEWACT
:Relations (:EFF'ECT [P ?SELF*T-NEWACT ] [Q ?SELFD>

RHET -> (Define-Instance [AlI] 'T-NewAct)

[Al]
RHET -> (Rassert [[Add-Action-Effects ?x*T-NewAct] <

[Type? ?x ?type*T-anything]
[Forall ?form [Relation-Form? ?form :effect ?type]

[Bind-Self-To-Instance ?form ?x]
[Assert-Fact ?forml)

([[SBMB [ADD-ACTION-EFFECrS ?X*T-NEWACT ]] <
[TYPE? ?X*T-NEWACT ?TYPE*T-ANYTHINGl
[FORALL! ?FORM

[RELATION-FORM? ?FORM :EFFECT ?TYPE*T-ANYTH1NG I
[BIND-SELF-TO-INSTANCE ?FORM ?X*T-NEWACT I
[ASSERT-FACT ?FORM]]])

RHET -> (list-all [P ?x])
NIIL

RHET -> (prove [Add-Action -Effects AlI])
[ADD-ACTION-EFFEC-rS AlI]
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RHET -> (list-all [P ?x])

([P A l <J)
RHET -> (list-all [Q ?x])

([Q Al <J)

7.6 Explicit Sets in RHET
RHET provides a limited facility for representing ordered finite sets. An ordered finite set is just a
restricted form of a list that can be treated as a first-class object by RHET. In particular, sets can be
used in equality assertions whereas lists cannot. As a result, the value of a role function can be a
set, but not a list.

Ordered sets are written using curly braces. Thus, ([a] [b] [c]) is an ordered set of three
RHET objects, [a], [b] and [c]. A set might also contain variables. For example, ([a] ?x ?y) is a
set containing three elements. In addition, a set whose cardinality is not yet known can be indicated
as shown in ([a] &rest ), which is a set containing at least one element, namely [a].

Only limited unification is supported for sets. In particular, sets may only unify if they have
explicitly the same number of elements, and the elements are in the same order. In fact, thinking of
the ordered sets as lists gives the right intuitions. Thus ([a] ?x ?y) will unify with ([a] [b] [c])
with ?x bound to [b] and ?y bound to [c]. ( [a] [b]) and I [b] [a]) will not unify as the elements are
not in the same order. Also, because of implementation considerations, ([a] &rest) will not unify
with ([a] [b] [c]) even though intuitively they should unify.

To set up a role function with a set value, we need to be able to define set types. All sets are
of type T-SET. Subtypes of T-SET can be defined by restricting the elements of a set to be of some
other RHET type. The type T-ORTHODOX-SET is predefined in RHET, and the elements of this
set are of type T-U. All user-defined set types whose elements are of type T-U must be subtypes of
T-ORTHODOX-SET. For example, we might have a set consisting only of elements of type T-
HUMAN. We can define such sets using the following function.

(Define-Set-Type NewType ParentType ElementType)

Defines the new name to be a subset of the parent type (which must be a subset or equal to
T-SET), where every element in the set is of the specified element type. Thus
(Define-Set-Type 'T-PEOPLE r-ORTHODOX-SET 'T-HUMAN)
defines a type T-PEOPLE whose instances are sets of elements of type T-HUMAN.
Given this, then

(Define-Set-Type 'T-BOYSCLUB 'T-PEOPLE 'T-MALE)
defines a type T-BOYSCLUB whose instances are set of elements of type

(T-HUMAN T-MALE).

Given such set types, we can have variables ranging over these sets by using a new syntax.
The variable ?x*!T-HUMAN is a variable ranging over sets whose elements are all T-HUMAN.

We also can now define R-ET terms as sets using Add-Itype and so on. Thus, the result
of

(Add-ltype 'T-PEOPLE [P1])

is that [P1] now denotes a set consisting of elements of type T-HUMAN. Of course, given only
this definition, RHET has no idea what elements are in this set. The value of the set can be
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specified using an equality assertion. Thus to say that [P1] consists of [HI] and [H2], two objects
of type T-HUMAN, we simply assert

(Add-Eq [P1] ([HI] [H2])).

If we know that [HI] and [H2] are in the set, but there might be other elements as well, then we
would assert

(Add-Eq [P1] ([HI] [H2] &rest)).

The Member predicate is defined on sets as well as lists. If can be used to enumerate the
known elements of a set. For example, given the above definitions

(prove-all [Member ?x [P1]])

will successively bind ?x to each element of the set [PI] (provided that the type restrictions on the
variable match the types of the elements, of course). The Member predicate can also be used to
add new elements to a set. Thus if I later find out that [H3] is also in the set, then I can add it by

(Rassert [Member [H3] [P1]]).

RHET allows roles to take multiple values by allowing role function values to be sets (i.e.
the function type is a subtype of T-ORTHODOX-SET). For example, we might define a set type
consisting of doors, as in

(Define-Set-Type 'T-DOOR-SET 'T-ORTHODOX-SET T-DOOR)

We could then define a role function for the type T-CAR that is a set of doors. For example, if
[Carl] is a T-CAR, then [f-CarDoor [Carl]] could be a set composed of elements of type T-
DOOR. Given this, we might define the R-Door role of [Carl] to consist of two doors, [D1) and
[d2] by

(add-eq [f-CarDoor [Carl] ([DI] [D2])).

Sets can also be constructed using a variant of SetValue which constructs a set out of a
list of values returned by a Lisp function.

[Set-SetValue Variable LispExpression]
Succeeds only if the variable is bound to the set consisting of the values returned by the
Lisp expression. If the proof backtracks to this predicate, it fails and the Lisp expression is
not re-evaluated. This predicate also can be used to set multiple variables simultaneously.
For details, see the reference manual.

Finally, if I discover that I know all the elements of the set, the I can assert this by fixing
the cardinality of the set by asserting:

[Fixed-Cardinality Set]
This predicate is true if the specified set has a fixed cardinality (i.e. all its members are
known and there are no other members). Asserting this predicate fixes the cardinality of a
set to be the current known contents, thus, if a set [P1] is currently equal to ([HI] 112]
[H3] &rest), then after asserting [Fixed-Cardinality P1], [PI] will be equal to {[HI] [H2]
[H3]).
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RHET.8: RHET with Contexts

8.1 Basic Concepts
All assertions in RHET except for type hierarchy declarations can be organized into

hierarchical contexts. There are two distinct uses of contexts in RHET. The first allows a user to
partition facts and axioms into a tree-structure of databases, where there is an inheritance of facts
and axioms from super-contexts as in CONNIVER [Sussman and McDermott 1972]. For example,
given the context tree in Figure 10, RHET could prove [S], [R], [Q] and [P] in context C4 (using
axioms in T, C2 and C4), whereas RHET could only prove [R], [Q] and [P] in C5, [S], [R] and
[P] in C6, and [P] and [R] in C7.

Such contexts are useful for maintaining competing hypotheses for a wide range of
reasoning problems. For instance, a plan reasoner might need to maintain several different
competing interpretations of an action performed by some other agent. All RHET functions for
asserting, deleting or querying facts take an optional argument to indicate the context. In addition,
there are procedures to create and delete leaf contexts from the context tree. For example, the left
hand branch of the context tree shown in Figure 10 could be constructed from the following
assertions (assuming T is the root context).

(Rassert [[P] < [Q]] [[R] < [S])
(Create-Ucontext 'C2 'T)
(Rassert [[Q] < [R] :rcontext (ucontext'C2))
(Create-Ucontext 'C4 'C2)
(Rassert [S] :rcontext (ucontext 'C4))
(Create-Ucontext 'C5 'C2)
(Rassert [R] :rcontext (ucontext 'C5))

The function Create-Context will be described fully in the next section.

The other need for contexts is to provide a facility for representing the beliefs of different
agents as belief spaces (Cohen 1978). RIET allows separate databases to be defined for each
agent, and allows the representation of simple shared beliefs and nested beliefs. While there are
clear limitations of this model as a full theory of belief (e.g. see [Konolige 1985], [Haas 1986],
[Moore 19851 for richer models), it is sufficient for many practical applications. The belief spaces
are organized hierarchically as shown in Figure 11.
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[P] < IQ]1
[R] < [S]

Figure 10: A Context Hierarchy

While the user could set up such a hierarchy explicitly, it is complicated to maintain both a
belief hierarchy and a hypothesis hierarchy. RHET provides a facility for combining both and
presents a simple user view in terms of a structure called the user context. To the user, a user
context acts like a hypothetical context in which assertions and queries about beliefs may be made.
RHET provides belief operators that act like modal operators in a logic. In particular, the
following is a legal formula:

[<belief modality> <formula>]

where the belief modality is an atom of the form xB, for any letter x. This is a formula that
indicates that agent x believes the specified fact or axiom. If the letter M is used, then this indicates
a mutual belief between all agents. Nested belief modals may be collapsed into single operators,
thus [AB [SB [P]]] can be written as [ABSB [P]].

Thus the formula

(1) [AB [[P] < [Q]]]

is interp,'eted as the system believes agent A believes that [Q] implies [P]. Similarly,

(2) [MB IQ]]
is interpreted as it is shared knowledge among all agents that [Q] holds. Given these two
assertions in a user context Cl, the formula

(3) [AB [P]]

is provable using the explicit belief (1) and the shared belief (3), whereas [P] (i.e. [MB [P]]) is not
provable. While the user works in terms of modal operators, RHET implements the operators in
terms of context shifts. Thus asserting (1) is implemented by moving to RHET context AB and
adding [P] < [Q]. Likewise, asserting (2) is implemented by moving to RHET context MB and

-64-



MB

Shared beliefs

SB ABMEB

System's beliefs What A believes is shared

AB ABSBMB What A believes
S believes is

What (system believes) shared
A believes

ABSBII
Figure 11: The Belief Space Hierarchy

adding [QI. Query (3) is implemented by moving to context AB and attempting a proof. Since
context AB inherits from context MB (see Figure 11) the proof succeeds.

RHET allows more complex axioms involving individual beliefs. For example, axiom (4)

(4) [[AB[QlJ < [SB[QJ]]

says that A believes [Q] if S believes [Q]. Note that this is not a belief of A, it is a relationship
between the beliefs of A and S. It is quite different than (5)

(5) JAB [[P] < [SBIP]]]]

which asserts that A believes [P] if A believes S believes [P]. Axiom (5) does ascribe a belief to
A, namely the axiom [[P] < SB[P]J.

A user context can be thought of as a set of possible leaves of the belief tree. Within a user
context, any combination of individual beliefs may be asserted or queried. For example, assume
that axioms (4) and (5) are added to the root user context, and let SB[P] and AB[Q] be added to a
subcontext called Cl. The user view of this situation and the actual RHET implementation are
shown in Figure 12.

As can be seen, to the user it appears that there is a simple two-context hierarchy with
modally qualified assertions. In the implementation, however, many things have happened. The
context Cl is actually a set of belief spaces inheriting from the leaves of the root belief spaces. In
addition, when assertions are added to the appropriate space (based on the belief operators on the
left hand side of the axiom), each axiom on the right hand side is indexed by its absolute space,
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rather than the relative space in the assertion. In particular, axiom (4) ends up in the space AB as

[P] < [SB! Q].

This is read as follows: [Q] is provable if [Q] can be proved in space SB. The exclamation mark
indicates an absolute belief modal (i.e. the correct space is found by starting at the root belief space
and shifting wrt S to SB). Axiom 5 in space AB, written at

[P] < [SB P]

shows the use of relative belief scoping. Here the appropriate space is found by shifting (with
respect to S) from space AB to space ABSB.

Given this set of assertions, it is possible to prove [AB[P]] in context Cl, but not in the
root context. Consider the actual RHET operations in performing the proof in Cl. The goal is to
prove [P] in space ABC1. Axioms (4) and (5) are inherited down to this space and so are
applicable. Trying axiom (4), RHET needs to prove [P] in space SBCl. Since [P] is asserted
there, the proof succeeds. In the root context, the proof fails because [P] cannot be proven in
space SB.

Limitations of the Belief Model

Any RHET formula can be added to a belief space, including equality assertions and type
information about individuals. The actual type hierarchy, however, is not expressible in RHET
assertions and cannot be made relative to a belief space. In particular, one cannot have the type *T-
DOG be a subtype of *T-MAMMAL in one space and not in another. It is possible, however, for
an individual, say [FIDO I], to be of type *T-DOG in one space and of type *T-CAT in another.

The major limitations of the belief model arise in the representation of shared beliefs and in
the use of variables. Shared beliefs can be asserted only in the root user context. This restriction
is essential since the efficiency of the implementation is based on the fact that the contexts are
organized as a tree. A space for hypothetical shared knowledge would require a more complex
context hierarchy. For the same reason, shared knowledge about an individual's beliefs cannot be
represented. Thus, while

[SBMB[Pj]

is allowed and asserts that S believes P is shared knowledge among all agents, the formula
"[MBSB[P]]" (i.e. it is shared knowledge that S believes P) is not allowed in RHET, and yields a
syntax error.
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The User View RHET Implementation

MB

ROOT CONTEXT

(4)ABQ]< SB[Oj(5) AB[[P] < SB[P]]SBA
<SBPI]SB ABMB

SUBCONTEXT C1 SBC1 AB

(6) SB[P] (6) [P) I(4) [0] < [SB! 0]
(7) AB[[Q] (5) [P] < [SB PI

ABC1

(7) [Q]

Figure 12: The User View and its RHET Implementation

The other limitation as a belief model concerns variable binding. RHET offers no scoping
distinctions for variables across belief operators. For instance, in FOPC and the traditional modal
interpretation of belief (e.g. Hintikka, 1969), there is a distinction between

Vx: DOG(x) D BEL(A, BARK(x))

in which it is asserted that, given any dog, A believes that it barks, and

BEL(A, Vx DOG z BARK(x))

in which it is asserted that A believes that every dog barks. The differences arise when there are
actually dogs that A doesn't know about, or when A believes some animal is a dog which in fact
isn't. Because there is no mechanism for scoping, RHET can only represent the latter form of
formula, in which the type restriction is relative to the belief space the formula is in.
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8.2 Using Contexts
As can be seen from the discussion above, there are two factors that determine the actual context
that RHET is to perform an operation in: the user context and the belief modality. A single user
context and a belief modality form a context called a RHET normal context. These are the contexts
that the system actually manipulates. When the user specifies one aspect of a context (say the belief
modality), but not the other (the user context), then RHET uses a standard default value for the
other to identify the RHET normal context. Unless overridden by the user, RHET uses the default
values SBMB for the belief modality, and "T" for the user context. Later on in this section, we
will see how these defaults can be changed.

Belief modalities are built into the system and are typically specified using the belief modal
construct. User contexts, on the other hand, must be explicitly defined by the user. Here are a set
of functions for defining user contexts.

(Create-Ucontext Name Parent-name)
This function creates a new user context with the indicated name and with the indicated
parent name. Thus (create-Ucontext 'C2 T) creates a user context named C2 that is a child
of the root context T.

(UContext-P Name)
Returns the user context indicated by the specified name if one exists, otherwise returns
NIL.

(Destroy-Ucontext Name)
Destroys the indicated context, including all children of this context.

(Ucontexts)
Returns a list of all defined user contexts.

All functions in RHET that assert, list or remove axioms, or do proofs, take an optional
argument to specify the RHET normal context in which the operation is to be performed. If none
are specified, RHET uses the default specifications to determine the appropriate RHET normal
context. The following functions are used to produce the RHET normal context from user context,
a belief modality, or both.

(Get-RNcontext Name &rest Operator)
Returns the full RHET normal context with the indicated user context and default belief
modality. If the belief modality is not specified, the default modality is used. If the context
name is NIL, then the default user context is used. Thus, if the default belief modality is
'SBHB, then (Get-RNcontext 'C2) will return the full RHET normal context SBHB-C2.
On the other hand, (Get-RNcontext 'C2 'SB) will return the RHET normal context SB-C2.

In addition, the default context can also be reset.

(Set-Default-Context RHETcontext)
Changes the default context to the full RIHET context indicated. This can be specified using
the Get-RNcontext function defined above. For example, to set the default user context
to 'C2 and not change the default belief modality, you call
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(Set-Default-Context (Get-RNcontext 'C2)).
Now an operation such as

(Rassert [P])
has the exact same effect as

(Rassert [SBHB[P]] :rcontext 'C2).

8.3 More Context Uses

Finally, RHET provides two operators that are convenient for hypothetical reasoning (using user
contexts). These can be used to change contexts temporarily during a proof.

[Assume <Form>*]
This creates a new subcontext to the current user context and then attempts to prove the
forms and succeeds or fails just as And would. Typically, the first form will actually add
information to the new context. The new context is deleted once this proof succeeds or
fails. For example, the following formula is true only if [P] implies [Q]:

[Assume [Assert-fact [P]] [Q]].
To prove this, RHET will create a new subcontext, add [P] and then try to prove [Q]. If the
original context contained the axiom [[Q] <[P]] then this proof would succeed.

[With RNcontext <Form>*]
This predicate changes the default context to the specified context and then attempts to
prove the indicated forms and succeeds or fails just as And would. If the user specifies a
name that is not currently a context, the a new context is created with that name.

RHET also provides a function to copy the facts in one context into another context. This is
useful when a subcontext has been used for hypothetical reasoning, and now you wish to
incorporate the results into the parent context, or when you need to shift facts between belief
spaces when modelling communication.

(Copy-Context Form From-context To-context)
This function takes all the facts directly (i.e. not inherited) in the from-context that unify
with the specified form and adds them to the to-context. It does not move axioms. Thus,
given

(Rassert [SB [P John]] [MB [P Sue]])
then

(Copy-context [P ?x*T-HUMAN] (Get-RNcontext nil 'SB)
(Get-RNcontext nil 'SBAB))

will add [SBAB [P John]]. Note that [SBAB [P Sue]] is not added here even though
[SB [P Sue]] is provable since this fact is inherited from the MB space. All facts in a
context may be copied by using a variable as the fact specification as in

(Copy-Context ?x*T-fact (Get-RNcontext nil 'SB)
(Get-RNcontext nil 'SBAB)).

8.4 Examples of Context Use

;the following constructs the database shown in figure 10.

RHET ->(Rassert [[P] < [Q1] [[R] < [S]])
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([[SBMB [RI] < [5]] [[SBMB [PI] < [0]])
RHET ->(Crcate-Ucontext 'C2 'T)

#<UContext C2>
RHET ->(Rasscrt [[0] < [R]] :rcontext (Get-RNcontext'C2))

([[SB [Q]] < [R]])
RHET ->(Create-Ucontext 'C4 'C2)

#<UContext C4>
RHET ->(Rassert [S] :rcontext (Get-RNcontext '(4))

(IS <D)
MHET ->(create-ucontext 'C5 'c2)

#<UContext C5>
RHET ->(rassert [r] :rcontext (Get-RNcontext 'c5))

([R <])
RHET ->(create-ucontext 'c3 't)

#<UContext C3>
RHET ->(rassert [p] :rcontext (Get-RNcontext 'c3))

(UP<])
RHET ->(create-ucontext 'c6 'c3)

#<UContext C6>
RHET ->(rassert [s] :rcon text (Get-RNcontext c6))

(IS <D)
RHET ->(create-ucontext 'c7 'c3)

#<UContext C27>
RHET ->(rassert [r] :rcontext (Get-RNcontext 'c7))

([R <])
RHET ->(prove [p] :rcontext (ucontext c7))

[P]
RHET ->(prove (r] :rcontext (ucontext 'c6))

[R]
RHET ->(set-default-rcontext (Get-RNcontext 'C7))

#<context SB-C7>
RHET ->(prove [p])

[P]
RHET ->(prove [q])

:UNKNOWN
RHET ->(prove [q] :rcontext (Get-RNcontext 'c5))

IQ]
;let's add some of the beliefs in figure 13 using the root context T and subcontext

.70-



;Cl
RHET -> (reset-rhet)

DEFAULT
then we create an context Cl, and (Get-RNcontext 'Cl) will tell RHET to update the

;system to include Cl as a Context.
R=E ->(create-Ucontext 'Cl 't)

#<UContext ClI>
RHET ->(ucontext-P 'ci)

#<context SB-Cl>
;A believes P if A believes that S believes P

RHET ->(Rassert [AB [[P] < [SB P]J]
;A believes Q if S believes Q (whether A knows S believes Qor not)
[[AB [0]] < [SB! [0]]])

([[SBAB [0]] < [SB! [Oil] NIL)
RHET ->(set-default-rcontext (Get-RNcontext 'Cl))

#<context SB-Cl>
S believes P and Q in context Cl

RHET ->(rassert [sb [p]] [sb [q]])
(NIL NIOL)

does A believe Q in the root context? no
RHET ->(prove [ab [q]] :rcontext (Get-RMcontext 't))

NIIL
does A Jelieve Q in context ClI? yes, since S believes Q in context ClI

RHET -(prove [ab [q11)

[AB [Oil
does A believe P in context ClI? no, since A doesn't believe that S believes P

RI-ET ->(prove [ab [p]])
NIL

RI-ET ->(prove [absb [p]])

YiEL
lets do that last query another way, specifying the belief modality (and using the default user

context)
RHET ->(prove [p] :rcontext (Get-RNcontext nil 'absb))

:UNKNOWN
and one other way not using any defaults

RHET ->(prove [p] :rcontext (Get-RNcontext 'c I 'absb))

:UNKNOWN

;and one final way
RI-ET ->(set-default-rcontext (Get-RNcontext 'c I 'absb))
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#<context SBABSB-C1>
RHET ->(prove [p])

:UNKNOWN
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Appendix A Running RHET

Under Allegro

Part of the rhet distribution is a directory marked CL-LIB. A subdirectory, cmu-utils contains
defsystem.lisp; a version of the defsystem macro used by rhet and the other knowledge tools in the
distribution. Load this, and then either set up a directory for it to look for the defsystem files by
default (we use /s5/allegro-local whose files are symbolic links, e.g. rhetorical.system ->

/s5/rhet/defsystem.lisp). Alternatively, you can simply load the defsystem file. Then do:

(mk:load-system 'rhetorical)

and rhet will be loaded.

Once rhet is loaded do:

.pa rhet-user

(reset-rhet)

and you are ready to begin using rhet. The readtable is globally changed to rhet's readtable by
reset-rhet by default under allegro.

If you are going to use the temporal reasoning facilities in RHET, you should load tempos
instead.fhis automatically loads rhet. Thus you do the following:

(mk:load-system 'tempos)

:pa rhet-user

(reset-tempos)

Warning: if you have tempos loaded, you must use reset-tempos rather than reset-rhet. Using
reset-rhet when tempos is loaded will create problems with the type subsystem.

Under Genera

After setting up the proper links in sys:site; just do

:load system rhetorical

Once the system is loaded you can do

:set lisp context rhet

:set package rhet-user

in any lisp listener, or

<select>-R

to bring up a CLIM interface to Rhet. (Unfortunately, since no good lisp listener is provided under
CLIM, all the limitations of the one provided are maintained, e.g. the debugger will come up under
it's own window, parsing errors typically invoke the debugger, etc.). If you are going to use the
temporal reasoning facilities in RHET, you should replace the initial system load above with

:load system tempos
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Appendix B New Function Names in Version 19
With version 19 of RHET, several Lisp functions in the interface were renamed to provide for
more consistency in naming. This is the list of new names and the functions that they replaced.

New Name Old Name
Reset-Rhet Reset-Rhetorical
Remove-Facts RetractAll
Remove-Facts-by-index. Clear
Rassert Assert-Axioms
List-Facts Find-Facts (but takes one form and returns a simple list)
List-Facts-with-Bindings Find-Facts-with-Bindings (but takes one form and returns a

simple list)
List-Facts-by-index Find-Facts-by-index
Trace-B-Axiomn Trace-BC-Axiom
Untrace-B-Axiom Untrace-B C-Axiom
Trace-F-Axiom Trace-FC-Axiom
Untrace-F-Axiom Untrace-FC-Axiom.
List-Fact-References Find-Fact-References
Define-Set-Type Declare-Set-type
Define-Fn-Type Declare-Fn-Type
Type-Object Get-type-object
Type-Relation Matrix-Relation
Type-Function Look-up-FN-type
Remove-Function-Def Delete-fn-type
Remove-Function-Def Remove-fn-type-def
Get-RNcontext Ucontext
Get-RNcontext Operator
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[Bind-Self-to-Instance Form Instance], 58
Index [Bound Term], 3

: INCONSISTENT, 15 [Call LispExpression], 41

:T-FLOAT, 2,23 (Clear-All-Fn-Type), 29

:T-INTEGER, 2, 23: (Clear-Axioms), 6

:T-LISP, 23 Complete reasoning mode. 15

:T-NUMBER, 2,23 [Cond (TestForm ActForml ... ActFormn)*), 3
:T-RATIONAL, 2,23 (Cons-RHET-Axiom HeadForm &Rest Forml ...:T-U, 23 

Formn), 43:UNKNOWN, 15 (Cons-Rhet-Form Head &rest Arglist), 42*Prin-FNTrm-Prety*, 
Constraint Posting, 14[: = Variable Expression], 4 Constraints, 56[< Expressionl Expression2], 4 constructor function, 52[<- Expression Expression2], 4 contexts, 63[<belief modality> <formula>], 4 (Copy-Context Form From-context To-context), 69[== Exlpessionl Expression2l], 4 (Create-Rvariable Pretty-Name &Optional (Type *T-

[= Expressionl Expression2] 4 U-ITYPE-STRUCT*) ), 42[>Expressionl Expression2], 4 (Create-Ucontext Name Parent-name), 68[>- Expression! Expression2], 4 [Cut], 3(Add-Dtype TypeDescriptor Term! Termn ), Debugging, 6[Add-Dtype TypeDescriptor Term! Termn], 36 (Declare-Lispfn Name Query-Function-Symbol
(Add-EQ GrundTerml G nnd.. T2), 36 &Optional Assert-Function-Symbol), 41(Add-FN-Type FunctionAtom (Type0 Type (Define-Conjunction New-Type (Existing-Type*)

n (Tn)*), 33 
&Key: Roles, 54(Add-InEq GroundTerm! GroundTerm2), 36 (Define-Fn-Type Fn-Name FunctionSpec*), 28(Add-IType TypeAtom &Rest Term 1 ... Termn), 28 (Define-Functional-Subtype Type Supertype &Key[Add-ITYPE TypeAtom &Rest Term ... Termn], 34 (Roles (Rolename Type)*)), 54[Add-Role Instance &Rest <Role-Name Value>*], (Define-Instance Instance Type &Rest Rolename

52 
value>*), 54(Add-Utype TypeAtom &Rest Term . Termn), 29 (Define-Rep-Relation Relation-Keyword &Key

(Add-UTYPE TypeAtom &Rest Term I ... Termn], Inherit-type), 5734 &(Define-Set-Type 
NewType ParentType

[And Forml ... FormN], 3 ElementType), 61

[any VarName LiteralO ... Literaln]., 14 (Define-Subtype Type Supertype &Key (Roles

arguments, 2 (Rolename Type)*)), 53

Assert-Axioms, 17 (Defme-Subtype Type Supertype &Key (Roles

assertable,, 3 (Rolename Type*)) (Relations (Relation-

axioms, 2 name Relation-Forms*)*) Constraints

[Assert-Axioms AxiomI ... AxiomN], 11, 18 Initializations), 56

[Assert-Fact Factl ... FactN], 12, 18 (Define-Time TermI ... Termn &key Reference-Time-

[Assert-if-Consistent Axioml ... AxiomN], 18 Term), 48

(Assume <Form>*], 69 Defining Types, 27

[Bagof VarI Form Var2], 12 (Destroy-Ucontext Name), 68

belief modality, 68 [Distinct Term 1 Term2], 17

belief spaces, 63 distinguished type, 26
DTYPE, 26

-76-



(E-Unify FormI Form2), 42 [NotEQ? teml term2], 35
equality, 34 [Not literal], 15
(Equivclass GroundTerm), 37 numbers, 2
(Equivclass-V Term), 37 numeric expressions, 2
[EQ? term 1 term2], 35 One-of, 35
[Expand-Constructor Constructor-Function], 56 [One-Of form 1 form2], 36
facts, 2 [Or Forml ... FormN], 3
[Fail], 3 [Post literal], 16
[Fixed-Cardinality Set], 62 predicate name, 2
(Forall! vars defForm testForml ... testFormn], 12 PROLOG, i
forward chaining axioms, 12 proof modes, 15
frame system, 51 (Prove Form &key Mode), 17
Function typing, 25 (Prove Form), 5
functional type, 51 [Prove Form], 16
[GenValue Term LispExpression], 41 (Prove-All Form &key Number-of-Proofs), 5
(Get-relations Relation-Keyword Type), 58 question answering mode, 15
(Get-RNcontext Name &rest Operator), 68 (Rassert AxiomI ... Axiomn), 5
[Ground Term], 3 [Relation-Form? Form Relation-Keyword Type], 58
headPattemrn, 4 [Relation-List List Relation-Keyword Type], 58
hierarchical contexts, 63 Relations, 57
Horn Clauses, 1 (Remove-All HeadPatten), 6
index, 2 (Remove-All-by-Index indexExpression), 9
Indices, 9 (Remove-B-Axioms HeadPattern), 6
inequality, 34 (Remove-B-Axioms-By-Index indexExpression), 9
(Inequivset GroundTerm), 37 (Remove-F-Axioms TriggerPattem), 18
Initializations, 57 (Remove-F-Axioms-By-Index indexExpression), 18
ITYPE, 26 (Remove-Facts HeadPattern), 6
Limitations of the Belief Model, 66 (Remove-Facts-by-Index indexExpression), 9
Lisp syntax, 2 (Remove-Function-Def FnAtom &Rest
(List-All HeadPattem), 6 FunctionSpec*), 30
(List-AU-By-Index indexExpression), 9 (Rep-Structures), 54
(List-B-Axioms HeadPattem), 7 (Reset-Rhet), 6
(List-B-Axioms-By-Index indexExpression), 9 (Reset-Tempos), 49
(List-F-Axioms TriggerPattern), 18 [Retract Form], 12
(List-F-Axioms-By-Index indexExpression), 18 (Retrieve-Def Object), 55
(List-Fact-References Form*), 7 [RFormat Stream control-String &rest Form*], 12
(List-Facts HeadPattem), 7 RHET normal context, 68
(List-Facts-By-Index indexExpression), 9 (Rhet-Dribble-End), 9
(List-Facts-with-Bindings HeadPattem), 7 (Rhet-Dribble-Start File-Spec &Optional (Mode:
(List-Forward-Chained-Facts), 18 Both)), 9
(Make-l-Type TypeDescriptor &Optional role functions, 51

Permissive), 42 role values, 51
[Member Term List], 3 [Role Instance RoleName Value], 53
negation, 12 [Role? RoleName TypeDescriptor], 53
nested beliefs, 63 [Rprint Terml ... TermN], 4
normal context., 68 [Rerpri], 4
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(RTypes), 29 [Type? Form TypeDescriptor], 26
(Rvariable-P Lispobject), 42 types. 23
(Set-Default-Context RHETcontext), 68 Types, of function terms, 25
(Set-Reasoning-Mode [: Simple; Default; (UContext-P Name), 68

Complete)), 19 (Ucontexis), 68
[Set-SetValue Variable LispExpression], 62 (Unify Formi Form2), 42
[SetMl Setvar Form Var], 12 ['Unify term I term2], 35
sets, 61 [Unless Form I.. FormN], 4
[SetValue Term LispExpression], 41 (UnTrace-B-Axiomn &Optional (BC-Axiom
shaed beliefs, 63 PredName)), 8
[Skolemize Variable TypeDescriptor], 27 (Untrace-Builtins), 9
(SubType? subType superype], 27 (UnTrace-EQ-Object Term I.. Terran), 18
(Tdisjomnt typeAtoml . typeAtomn), 28 (UnTrace-F-Axiom &Optional Form), 19
Temporal Reasoning, 47 (Untrace-Request Term*), 38
[Time-Reln Tunel. Rein Time2], 47 (Untrace-Temnpos), 49
[Time-Reln-P Timel Reln Tirne2], 48 user context, 68
IlTime-Skolem Variable &optional Reference-Time], UTYPE, 26

49 [Var Term], 4
(Triame-Intersect NewTypeAtom typeAtom 1.. Variables in RHET, 2

typeAtomn). 28 [Win], 4
(Toverlap typeAtom I.. typeAtomn), 27 [With RNcontext <Form>*I, 69
(Trace-B-Axiom &rest f {bc-axiom headpatern) Q bc-

axiom headpattern ) keyword*)) *, 7
(Trace-Builtins), 9
(Trace-EQ-Object Term Keyword*), 37
(Trace-F-Axiomn {FC-axiom ThiggerPattem)

Keyword*), 18
(Trace-Request Term*), 37
(Trace-Tempos &Optional Verbose-P), 49
trigger, 13
(Tsubtype typeAtomO typeAtomi .typeAtomn), 27
(Type-CompatibleP TypeDescriptor I

TypeDescriptor2), 3.4
(Type-ExciusiveP TypeDescriptorl TypeDescriptor2),

34
(Type-Function FunctionAtom), 29
(Type-Info TypeAtom), 29
(Type-IntersectP TypeDescriptor I TypeDescriptor2),

34
(Type-Object Rhet Var), 42
(Type-Object Term), 29
(Type-Relation TypeAtom I TypeAtom2), 29
(Type-Subtype TypeAtomn &key Recursive), 29
(Type-Supertype type Atom &key recursive), 29
[Type-Relation TypeAtom I Relation TypeAtom2],
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